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Abstract

We prove that the difference between the interest rate and the discount rate is
proportional to the severity of credit constraints at any stationary equilibrium in
standard heterogeneous-agent economies. This severity is measured as the economy-
wide average of the shadow price of the credit constraint. We deduce that stationary
equilibria only exist when credit constraints are binding for a positive mass of
agents. This has important implications for both positive and normative results in
heterogeneous-agent models.
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1 Introduction

Incomplete insurance-market economies are fast becoming a standard setup for macroe-
conomic analysis. Such frameworks are also called Bewley-Huggett-Aiyagari-Imohoroğlu
economies (named after the seminal papers of Bewley (1983), Huggett (1993), Imro-
horoğlu (1992), and Aiyagari (1994)) or, more concisely, heterogeneous-agent economies.
These economies have the great advantage of being able to reconcile a sound theoretical
model with the actual heterogeneity observed in micro-data. However, these frameworks
are highly complex and some theoretical aspects – including equilibrium existence and
multiplicity – are not yet fully understood. This article provides a novel characterization
result stating that, at any stationary equilibrium, the difference between the discount rate
1/β and the interest rate 1+r is proportional to the severity of average credit constraints
in the economy. This severity is measured by the average shadow price (i.e., Lagrange
multiplier) of the household borrowing constraint, where the average is computed over
the whole population.

This characterization has several implications. First, the severity of the credit con-
straints and the average marginal utility of households are sufficient to pin down the
liquidity premium 1

β
− (1 + r). Second, if binding credit constraints are not experienced

by a positive mass of households, the liquidity premium is null and the stationary equi-
librium is characterized by β(1 + r) = 1. As shown in Chamberlain and Wilson (2000),
this implies that the stationary equilibrium does not exist in standard cases. Stationary
equilibria in heterogeneous-agent models therefore go hand-in-hand with binding credit
constraints.

The setup of our proof comprises a standard heterogeneous-agent economy, where
agents, facing a Markovian idiosyncratic productivity risk and borrowing constraints,
can save in a riskless asset. The proof itself is rather straightforward and relies on the
aggregation of individual Euler equations in a stationary equilibrium for general utility
functions. For the sake of conciseness, the core of the paper focuses on a finite-state
idiosyncratic risk. We also discuss several extensions, including a continuous space for
the idiosyncratic risk, a more general income process, and capital taxes. These exten-
sions do not affect our results – including non-existence. Overall, our characterization
of the relationship between the interest rate and credit constraints is very general and
holds as long as households have access to an asset whose return is not affected by their
idiosyncratic risk.

This paper is written as a note that focuses on characterizing the interest rate and
the existence of stationary equilibria, using a simple proof in a general environment. To
the best of our knowledge, the result about the interest rate is new. The result about
existence characterization clarifies a rather vast literature on equilibrium existence, which
has been studied in various specific environments. Krebs (2004), for instance, shows that
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a recursive equilibrium cannot exist in a two-agent incomplete-market economy – without
production – when credit constraints are non-binding. Several technical assumptions must
also hold: the per period utility function must be unbounded from below (which rules
out CARA utilities and CRRA utilities with an elasticity of substitution above 1, for
instance) and endowment processes must follow a Markov chain with finite support. We
consider a standard heterogeneous-agent economy (with a continuum of agents), with a
standard utility function (strictly increasing, concave) and production. Our result holds
for any stationary equilibrium (independent of a recursive or sequential formulation) and
can easily be extended to a large class of income processes. Furthermore, we also provide
a robust relationship between the interest rate and credit constraints in any stationary
equilibrium economy.

Another related paper is that of Miao (2002), who studies the existence of a station-
ary recursive competitive equilibrium in a heterogeneous-agent economy with produc-
tion. Miao’s analysis, however, relies on certain assumptions (smoothness condition on
the Markov process, upper bound on the utility function, curvature assumption on the
utility function). We relax all of these assumptions and further show that any stationary
equilibrium, if it exists, must feature binding credit constraints for a positive mass of
agents whenever individual income is stochastic (in the spirit of Chamberlain and Wilson
2000).

Finally, Açikgöz (2018) provides existence results for stationary equilibria when credit
constraints bind in equilibrium. Our analysis shows that this appears to be a complete
characterization of stationary equilibria in standard incomplete market economies.

More generally, our paper is also complementary to the long-standing strand of the
literature proving equilibrium existence in heterogeneous-agent models, that started with
Bewley (1986) in a monetary economy. Huggett (1993) proves existence of a stationary
equilibrium in an endowment economy, assuming a two-state monotone Markov process.
Zhu (2017) proves existence in a production economy with endogenous labor supply,
but with bounded utility functions. Kuhn (2013) relaxes the boundedness assumption
but only considers CRRA utility function and an endowment economy with mortality
and IID and permanent income shocks. Acemoglu and Jensen (2015) prove equilibrium
existence for an exogenously bounded set of asset choices in a set-up that is not restricted
to Bewley economies.1 Finally, a last set of papers, namely Miao (2006), Cheridito and
Sagredo (2016), and Cao (2020), prove, under various technical restrictions, the existence
of a competitive sequential equilibrium in incomplete-market economies with aggregate
shocks.

The rest of the article is organized as follows. Section 2 presents the environment.
1Our result is derived in the standard case that does not feature such bounds on individual sav-

ing choices. It would be relatively straightforward to extend the results to their setup, in which the
equilibrium interest rate would depend on the mass of agents at the upper bound of the choice set.
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Section 3 states our main characterization result and provides its proof in the case of
a sequential formulation and finite-state idiosyncratic risks. Section 4 presents several
extensions, while Section 5 discusses the implications for the literature.

2 Environment

The environment is a standard heterogeneous-agent economy with production in discrete
time. We assume that the economy is populated by a continuum of agents with unit
mass, and distributed on an interval I according to a measure ` (·). We follow Green
(1994) and assume that the law of large numbers holds.2

2.1 Idiosyncratic risk structure

In each period, every agent inelastically supplies one unit of labor and receives an income
in exchange for her labor supply. This income, denoted by et, is risky and this risk cannot
be insured or avoided. Income realizations belong to a set denoted by E that is assumed
to be finite and to contain only distinct possible income realizations.3 Furthermore, the
income process follows a finite-state first-order Markov chain and we denote by Πe,e′ the
(constant) probability of switching from the current income e ∈ E to the income e′ ∈ E
in the next period.

The history of idiosyncratic shocks from date 0 to date t is denoted by et = {e0, . . . , et} ∈
Et+1 and gathers all shock realizations prior to date t. We denote by et+1 � et the fact
that history et+1 is a possible continuation of history et, meaning that the realizations of
et and et+1 coincide for all dates from 0 to t. Finally, the quantity Π̃et,et+1 represents the
probability of switching from history et at t to history et+1 at t + 1. This probability is
equal to the transition probability from et at t to et+1 at t+ 1 if et+1 is a continuation of
et. Formally: Π̃et,et+1 ≡ Πet,et+11et+1�et , where 1et+1�et = 1 if et+1 � et and 0 otherwise.

We allow the initial distribution of agents (at date 0) to depend on the agent’s initial
income. This assumption offers generality and makes it possible for the economy to start
from the steady-state wealth distribution. We denote by A = [−a,∞) the set of possible
wealth levels. Agents are prevented from borrowing more than a ≥ 0, which bounds
the set A from below. Note that this borrowing limit – as for any finite limit – could
equivalently be set to zero without loss of generality after a proper renormalization of the
income process (see Aiyagari 1994). Zero is the natural borrowing limit if productivity is
null for one idiosyncratic state, for instance.4

2See also Miao (2006) for a careful treatment of the law of large numbers in these economies.
3See Section 4 and Appendix B for extensions of this simple framework, for instance to the case of

an uncountable set E.
4The natural borrowing limit is the smaller borrowing limit (in absolute value) such that credit

constraints do not bind in equilibrium. It is called the “present value” borrowing limit in Aiyagari
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We denote by A the σ-algebra of Borel sets of A. Similarly, we denote by E the power
set of E.5 We assume that the initial distribution of agents at date 0 is characterized
by the measure µ0 defined on the product σ-algebra E × A, such that for any A0 ∈ A
and E0 ∈ E , µ0(E0, A0) is the measure of agents with initial wealth in A0 and history
in E0. Note that, with a slight abuse of notation, we will denote the measure of agents
with initial income e0 and initial wealth in A0 by µ0(e0, A0), instead of µ0({e0}, A0).
The distribution of agents at future dates t ≥ 1 will depend on idiosyncratic history
evolution and on initial wealth – since, loosely speaking, the initial dependence at date
0 will propagate at “later” dates. Noting that E t is the σ-algebra defined on the product
space Et, we will denote by µt (Et, A0) the measure of agents with idiosyncratic history
et ∈ Et at date t and initial wealth a0 ∈ A0. First, note that since the total measure of
the population is constant and equal to 1 at all dates, we have, at all dates t:

ˆ
a0∈A

∑
et∈Et

µt(et, da0) = 1.

Second, using Bayes’ law, the measure µt+1 can be expressed using the measure µt and
transition probabilities (Π̃et,et+1)et,et+1 . Formally, for any et+1 ∈ Et+1 and any A0 ∈ A:

µt+1(et+1, A0) =
∑
et∈Et

Π̃et,et+1µt(et, A0). (1)

2.2 Agents’ program

Agents are expected-utility maximizers with standard time-additive preferences. The
discount factor β ∈ (0, 1) is constant and the period utility function, denoted by u :
R+ → R, is twice continuously differentiable, increasing, and strictly concave.

Agents can transfer resources from one period to another through a security (capital
shares) that pays off the deterministic interest rate r. However, as already explained,
borrowing is limited and agents cannot borrow more than the amount a ≥ 0. Agents
choose their consumption path (ct)t≥0 and their saving path (at+1)t≥0 so as to maximize
their expected utility, subject to credit limits and the borrowing constraint. The latter
states that, at any date, spending on consumption and savings cannot exceed resources,
comprising savings payoffs and income. Formally, the agent’s program can be expressed

(1994).
5Note that E can also be seen as the Borel sets of the discrete space E endowed with discrete topology.
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as:

max
{ct,at+1}∞

t=0

E
∞∑
t=0

βtu (ct) , (2)

s.t. ct + at+1 ≤ (1 + r) at + et, (3)

at+1 ≥ −a, (4)

a0, e0 given. (5)

In equation (2), the unconditional expectation E[·] is taken over the future income
stream, which is the only stochastic variable. A solution to the household problem (2)–(5)
is a sequence of measurable consumption functions ct : Et × A → R+ and a sequence of
measurable Lagrange multipliers on the credit constraint νt : Et × A → R+, solving the
standard Euler equation at all dates t:

u′
(
ct(et, a0)

)
= β (1 + r)

∑
et+1∈Et+1

Π̃et,et+1u′
(
ct+1(et+1, a0)

)
+ νt(et, a0), (6)

where∑et+1∈Et+1 Π̃et,et+1 [·] is the conditional expectation operator written in explicit form.
Note that when the credit constraint does not bind at date t for initial wealth a0 and
history et, we have νt(et, a0) = 0. The quantity νt(et, a0) can be interpreted as the shadow
price of the agent’s credit constraint (4). The saving functions at+1 : Et × A → R+ can
then be deduced from the budget constraints.

2.3 Production

In each period t, a representative firm produces output Yt using capital Kt and labor
Lt. The firm rents the capital at a rate rt and the labor at a wage wt. Production net
of depreciation is F (Kt, Lt)− δKt where δ ∈ (0, 1) is the depreciation rate and F (·, ·) is
a constant-returns-to-scale production function, strictly increasing and concave. Profit
maximization implies (FK and FL denote the partial derivatives):

rt = FK (Kt, Lt)− δ, wt = FL (Kt, Lt) . (7)

Capital and total labor supply are defined by market clearing conditions:

Kt =
ˆ
a0∈A

∑
et∈Et

at(et, da0)µt(et, da0), Lt =
ˆ
a0∈A

∑
et∈Et

etµt(et, da0). (8)

2.4 Equilibrium

We now define the concept of stationary competitive equilibrium.

Definition 1 (Equilibrium) A stationary competitive equilibrium is a collection of in-
dividual allocations (cit, ait)t≥0,i∈I, aggregate quantities (K,L), and price processes (w, r),
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such that, for an initial wealth distribution (ai0)i∈I, we have:

1. For given prices, individual allocations (cit, ait)t≥0,i∈I solve the agent’s program (2)–(5);

2. Financial, labor, and goods markets clear at all dates. Finite values K,L ∈ R exist
such that for any t ≥ 0:

K =
ˆ
a0∈A

∑
et∈Et

at(et, da0)µt(et, da0), L =
ˆ
a0∈A

∑
et∈Et

etµt(et, da0),

F (K,L) =
ˆ
a0∈A

∑
et∈Et

ct(et, da0)µt(et, da0) + δK;

3. Factor prices are consistent with (7): r = FK (K,L)− δ and w = FL (K,L);

4. The distribution of marginal utilities is constant (and finite) over time, i.e.:
ˆ
a0∈A

∑
et∈Et

u′
(
ct(et, da0)

)
µt(et, da0) =

ˆ
a0∈A

∑
et+1∈Et+1

u′
(
ct+1(et, da0)

)
µt+1(et, da0). (9)

In our stationary equilibrium definition, points 1 to 3 are very standard – see Açikgöz
(2018) for instance. We focus on the equilibrium with constant prices and constant
aggregate quantities. Point 4 is however weaker than in the standard formulation, which
usually assumes that the distribution of asset holdings is constant in the economy. We
only require the aggregation of individual marginal utilities to be constant.

3 Main result

The following proposition contains our main result.

Proposition 1 (Interest rate) In any existing stationary equilibrium, the interest rate
must satisfy:

1
β
− (1 + r) =

´
a0

∑
et∈Et ν(et, a0)µt(et, da0)

β
´
a0

∑
et∈Et u′ (ct(et, a0))µt(et, da0) . (10)

As the proof is short, we first provide it before discussing the Proposition.
Proof. Aggregating the Euler equations (6) over all possible histories et ∈ Et and all
initial asset holdings a0 ∈ A yields:

ˆ
a0

∑
et∈Et

u′
(
ct(et, a0)

)
µt(et, da0)−

ˆ
a0

∑
et∈Et

ν(et, a0)µt(et, da0)

= β (1 + r)
ˆ
a0

∑
et∈Et

∑
et+1∈Et+1

Πet,et+1u′
(
ct+1(et+1, a0)

)
µt(et, da0),

= β (1 + r)
ˆ
a0

∑
et+1∈Et+1

u′
(
ct+1(et+1, a0)

) ∑
et∈Et

Πet,et+1µt(et, da0)
 ,
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where the last equality comes from the permutation of the two finite sums. Using the
recursive definition of (µt) in equation (1) stating that the term between brackets is µt+1,
our stationarity property (9) readily implies the expression (10). Note that we can rule
out
´
a0

∑
et∈Et u

′ (ct(et, a0))µt(et, da0) = 0 for some t. Indeed, should it hold, this would
imply u′ (ct(et, a0)) = 0 almost surely and thus ct(et, a0) = ∞ almost surely (because
u′ > 0 and u′′ < 0), which is not compatible with a stationary equilibrium of a finite
economy.

Proposition 1 states that the gap between the discount rate and the interest rate is
proportional to the average shadow price of credit constraints, where the average is com-
puted over all possible idiosyncratic histories and initial asset holdings. This equilibrium
outcome can be seen from two perspectives. First, if the interest rate 1 + r is below the
discount rate 1/β, then self-insurance is costly. As a consequence, households rationally
choose not to perfectly self-insure themselves and hit the credit limit with probability 1 in
some states of the world. This is an important step in the proof of existence presented by
Açikgöz (2018), for instance. Conversely, when the credit constraint binds in some states
of the world, households want to save to transfer resources to this state of the world. As
a consequence, they accept a lower return, relative to the complete market economy, due
to this self-insurance motive. This generates a liquidity premium on the asset.6

For the sake of simplicity, Proposition 1 and its proof are stated with a sequential
formulation of the model. The proposition also holds using a recursive formulation (see
Appendix A).

The following corollary is immediate, as it is a reformulation of Proposition 1.

Corollary 1 (Stationary equilibrium characterization) Any existing stationary equi-
librium must feature either:

• β (1 + r) < 1 and binding credit constraints for a positive measure of agents; or

• β (1 + r) = 1 and non-binding credit constraints (almost surely).

Corollary 1 provides a straightforward characterization of any stationary equilibrium
(whenever it exists).

We conclude this section with a very general impossibility result.

Corollary 2 (Existence) If CardE ≥ 2 and if for all e, e′ ∈ E, Πee′ ∈ (0, 1), a station-
ary equilibrium cannot exist when credit constraints are non-binding for a positive mass
of agents.

Proof. The corollary is the direct consequence of Proposition 1. It is proven by contra-
diction. If a stationary equilibrium exists and credit constraints do not bind, we must

6Liquidity is defined here as an asset’s ability to transfer some wealth in the state of the world where
the credit constraint binds.
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have β(1 + r) = 1, which has been shown to be incompatible with the existence of a sta-
tionary equilibrium. More precisely, Chamberlain and Wilson (2000) (Corollary 2, p. 381)
show under very general conditions that if the discounted income stream has sufficient
variability, the consumption path will almost surely diverge to infinity. In our case, with
a stationary Markovian process, the variability condition implies that V0 [∑∞t=0 β

tet|e0] is
bounded away from 0 for any initial state e0. Since β > 0, V0 [∑∞t=0 β

tet|e0] = 0 implies
either a unique income level (and thus no income risk) or a transition matrix (Πe′e) con-
taining an attractive state. The first point is made impossible by CardE ≥ 2 and the
second one by Πee′ ∈ (0, 1) for all (e, e′).

Corollary 1 states that any stationary equilibrium – whenever it exists – must feature
a binding credit constraint for a positive measure of agents, as long as income is volatile.
In the case of the finite-state Markovian process, this only rules out polar cases: one-
state Markov chains and conditionally deterministic Markov chains (i.e., with transition
matrices containing only zeros and ones).

A numerical example. For illustrative purposes, we simulate a standard incomplete
market economy. We plot the asset demand for varying credit limits. Agents are assumed
to have a labor endowment equal to e1 = 1 or e2 = 0.8. The transition matrix across
these two idiosyncratic states is assumed to be symmetrical.

Π =
 0.9 0.1

0.1 0.9

 .
The discount factor is β = 0.96, the production function is F (K,L) = KαL1−α, with
α = 1/3, and the depreciation rate is δ = 0.1. We then compute household asset demand
as a function of the interest rate r. We perform this exercise in two environments. In
the first one, the credit limit is set to a = 0. In the second, the credit limit is close to
the natural borrowing constraint an (r) = − (1− ε)we1/(1 + r), where ε = 1%. In other
words, the credit limit is 99% of the natural borrowing limit.

Figure 1 plots our results using the Aiyagari (1994) representation. The x-axis corre-
sponds to asset quantity and the y-axis to the interest rate. The black solid line is the
firm’s capital demand, which is steadily downward sloping (and looks vertical due to the
scale of the x-axis). The horizontal black dashed line plots the interest rate 1 + r = 1/β,
which would prevail in the complete market economy. The red line plots household as-
set demand in the economy where a = 0. The blue solid line plots asset demand when
borrowing is set to an (r), which varies with the interest rate r.

A looser credit limit translates the asset demand to the left. This result is derived
theoretically by Acemoglu and Jensen (2015). A tightening of the credit limit, namely
a “positive shock” using their wording, increases household savings through the self-
insurance motive. The equilibrium interest rate in these two economies is at the inter-
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Figure 1: Asset supply and demand for different credit limits

section between the black solid line and the relevant asset-demand curve. The severity
of the credit limit, measured as the right-hand side of equation (10), is the difference
between the equilibrium interest rate and the dashed line representing 1/β.

4 Extensions

In this section, we briefly discuss various extensions to the result of Proposition 1, as well
as those of Corollaries 1 and 2 (besides the recursive formulation of Appendix A).

A continuous income space. Generalizing the income space E to a continuous space
– while maintaining the Markovian structure – is rather straightforward and does not
affect any of our results. The proof is also roughly the same, with the only major difference
being a technicality: the discrete sum over idiosyncratic histories becomes an integral.
See Appendix B for a formal presentation.7

The results, in particular Proposition 1 and Corollary 1, would also hold for much more
7Obviously, the σ-algebra E on E is now the Borel algebra of E and not the power set of E. The

measure µt defined on Et ×A is thus changed accordingly.
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general income processes (including non-Markovian ones). As in Chamberlain and Wilson
(2000), the non-existence result requires sufficient variability in the income process.

Capital tax. Proposition 1, and Corollaries 1 and 2, still hold if a linear capital tax is
allowed. The only difference is that the results will be formulated in terms of the post-tax
interest rate (rather than the pre-tax one). Households face the post-tax rate and it is
thus this rate that matters for their decisions.

Endogenous labor supply. Introducing endogenous labor supply (with idiosyncratic
productivity risk) will not affect the results of Proposition 1 and Corollary 1. Indeed,
the individual Euler equations for consumption remain valid, even though they may also
depend on labor choices. Their aggregation still leads to the characterization of the
interest rate at any stationary equilibrium.

The existence result of Corollary 2 will, however, depend on the formalization of
the labor supply. Marcet, Obiols-Homs, and Weil (2007) have shown that a stationary
equilibrium can exist when β(1 + r) = 1 if the wealth effect on the labor supply is
sufficiently high to reduce both labor income and the capital accumulation of wealth-rich
agents. Conversely, if the wealth effect is low or absent – as in the case of a Greenwood-
Hercowitz-Huffman utility function – then no stationary equilibrium exists and Corollary
2 holds.

Summary. In short, Proposition 1 and Corollary 1 are robust to various extensions
and will hold as long as the two following key conditions are present.

1. There should be at least one asset whose interest rate is not affected by agents’
idiosyncratic risk. In loose terms, the interest rate needs to be “taken out” of their
idiosyncratic risk expectation.

2. Aggregating individual Euler equations should generate the aggregate values of
marginal utilities for the whole population. This notably implies the existence of a
stationary distribution and also implies that in the presence of mortality (as in the
Blanchard-Yaari model) some specific assumptions about the initial endowments of
new-born agents need to be made to maintain our result.

5 Implications for the literature

The above analysis has important implications for the literature. First, the seminal
paper of Aiyagari (1994) focuses on stationary equilibria in various contexts, including
the case of non-binding credit constraints. In some analyses, the borrowing limit is then
set to a value lower than the so-called “present value” borrowing limit, or the natural
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borrowing limit. One of the conclusions of our paper is that Ricardian equivalence holds
in this environment. Unfortunately, however, the stationary equilibrium does not exist
and the long-run effect of public debt in stationary environments should be analyzed in
the presence of binding credit constraints.

Second, Aiyagari (1995) analyzes optimal capital and labor taxes, and public debt,
in a standard incomplete-market model, where the government has to finance public
consumption. Aiyagari finds that, in this economy, the government sets the before-tax
interest rate r̃ equal to the discount rate 1/β − 1, or equivalently: β(1 + r̃) = 1. This
is called the “Golden Rule”. As no stationary equilibrium can exist when β(1 + r) = 1
(r again denoting the post-tax interest rate faced by agents), he concludes that capital
taxes must be positive for any stationary equilibrium to exist. Our finding confirms this
statement. More precisely, our previous analysis shows that the government implicitly
chooses the “measure” of agents who are credit-constrained. This property could help
prove that stationary equilibria with optimal positive capital tax do indeed exist, which,
to the best of our knowledge, has not yet been achieved.

Third, the seminal papers of Angeletos and Calvet (2005, 2006) consider non-binding
credit constraints in the CARA-normal case in an economy where households are en-
trepreneurs endowed with their own production function and facing an idiosyncratic pro-
duction risk (either through the total productivity factor or the depreciation rate). Their
results are derived in a non-stationary equilibrium, where the variance of consumption
is unbounded. Our non-existence result, which applies to their framework, confirms that
focusing on a stationary equilibrium is not possible in such setups.

Finally, a recent literature stream is currently analyzing optimal Ramsey policies in
incomplete market economies. A potential method for deriving the planner’s first-order
conditions is the “primal approach”, which is often used in complete market economies
(see Chari, Nicolini, and Teles 2019 for a recent discussion and formulation). This ap-
proach uses households’ non-binding Euler equations as a substitute for the real interest
rate. As shown by our analysis, no stationary equilibrium exists in this case, which limits
the scope of this approach to non-stationary economies. An alternative strategy is to use
the “Lagrangian approach” developed by Marcet and Marimon (2019). Some progress
in this direction has been made by Açikgöz, Hagedorn, Holter, and Wang (2018) and
Le Grand and Ragot (2019).
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Appendix

A The proof using a recursive representation

In the interests of clarity, the paper’s setup and proofs were provided using a sequential
representation. We prove here that results still hold in a recursive representation. As we
provide a characterization of the interest rate and existence in any stationary equilibrium,
we will simply assume that it exists, and derive proofs by contradiction. The framework
is the same as that described in Section 2 – in particular the income space E is discrete.

We assume that a stationary probability measure ψ : E ⊗ A → [0, 1] exists such that
ψ (e, A0) is the stationary measure of agents of productivity type e ∈ E, who hold a
quantity of assets in the set A0 ⊂ A. The agents’ program written in recursive form is
defined by the value function V (e, a) = maxc,a′u (c) + βEV (e′, a′), subject to the budget
constraint a′ + c = a (1 + r) + we and to the credit constraint a′ ≥ −a.

A stationary equilibrium is defined as a set of policy functions c (e, a) and a′ = ga (e, a),
for consumption and savings respectively, prices r, w, and a stationary distribution ψ such
that: (i) the policy functions solve the agents’ program when prices are given; (ii) capital
and labor markets clear: K = ∑

e∈E
´
A
ga (e, a) dψ (e, da) and L = ∑

e∈E
´
A
edψ (e, da);

and (iii) ψ is invariant because of the transition functions generated by the policy rules
and the law of motions of the income space – which formally means that, for all A0 ∈ A
and e ∈ E:

ψ (e, A0) =
∑
ẽ∈E

ˆ
a∈A

1A0 (ga(ẽ, a)) Πẽ,eψ (ẽ, da) ,

where 1A0 (ga(a, ẽ)) = 1 if ga(a, ẽ) ∈ A0 and 0 otherwise. The first-order condition for the
agent’s program can be written as:

u′ (c(e, a)) = β (1 + r)
∑

e′∈E
Πe,e′u′ (c (e′, ga(e, a))) + ν (e, a) , (11)

where ν (e, a) is the Lagrange multiplier on the credit constraint.
In such an equilibrium, the distribution of marginal utilities is constant over time, as

is the average marginal utility in the economy. Seen from the current period, the next
period average marginal utility is given by the policy rules and the law of motion for
the productivity shock. Indeed, for agents with a productivity level e and a wealth level
a ∈ A, their next period marginal utility, if they happen to have productivity e′ ∈ E, is
given by u′ (c (e′, a′)) = u′ (c(e′, ga(e, a))) and there will be a fraction Πe,e′ × ψ (e, da) of
such agents. As a consequence, the next period average marginal utility in the economy
being equal to that of the current period, we have:

∑
e,e′∈E

ˆ
A

u′ (c (e′, ga(e, a))) Πe,e′ψ (e, da) =
∑
e∈E

ˆ
A

u′ (c (e, a))ψ (e, da) . (12)
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Integrating the Euler equation (11), we deduce that:

∑
e∈E

ˆ
A

u′ (c (e, a))ψ (e, da) = β (1 + r)
∑
e∈E

ˆ
A

∑
e′∈E

Πe,e′u′ (c (e′, ga(e, a)))ψ (e, da)

+
∑
e∈E

ˆ
A

ν (e, a)ψ (e, da) .

Using the stationarity of the average marginal utility in the economy of equation (12),
we can directly state the following proposition.

Proposition 2 (Interest rate) If a recursive stationary equilibrium exists, then:

1 + r = 1
β
−

∑
e∈E
´
A
ν (e, a)ψ (e, da)

β
∑
e∈E
´
A
u′ (c (e, a))ψ (e, da) .

Proposition 2 is the strict parallel of Proposition 1 for the recursive formulation. As
a consequence, when credit constraints do not bind, we again have β(1 + r) = 1 for any
existing stationary equilibrium, and Corollaries 1 and 2 still hold.

B Proof for a continuous income state-space

We now provide the proof for a continuous income space E ⊂ R+ and its Borel algebra
E . We consider a transition kernel p, which extends the notion of transition probabilities.
More precisely, for any e ∈ E and any E0 ∈ E , p(E0|e) is the probability of reaching an in-
come e′ ∈ E0 from the income e. From p, we can deduce the transition kernel for histories,
denoted p̃, which is defined by: p̃

(∏t+1
τ=0 Eτ |et

)
=
´
et+1∈

∏t+1
τ=0 Eτ

1et+1�etp(det+1|et) for all∏t+1
τ=0 Eτ ∈ E t+1 and all et ∈ Et. Note that making the relationships between et and et ex-

plicit (et = (ẽt−1, et)) and between et+1 and et+1 explicit (et+1 = (ẽt, et+1)), the definition
of p̃ can also be written as: p̃

(∏t+1
τ=0 Eτ |(ẽt−1, et)

)
=
´

(ẽt,et+1)∈
∏t+1
τ=0 Eτ

1ẽt=etp(det+1|et).
As in the main text, we start from an initial distribution µ0 defined over E ×A, such

that
´
E×A µ0(de0, da0) = 1. The distribution at date t, denoted by µt is defined over

E t ×A and verifies the following recursion:

µt+1

(
t+1∏
τ=0

Eτ , A0

)
=
ˆ

(et+1,a0)∈
∏t+1
τ=0 Eτ×A0

ˆ
et∈Et

p̃(det+1|et)µt(det, da0), (13)

where Eτ ∈ E and A0 ∈ A. Using infinitesimal notation, we can alternatively write µt+1:

µt+1(det+1, da0) =
ˆ
et∈Et

p̃(det+1|et)µt(det, da0). (14)

We can now state a result similar to that of Proposition 1.
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Proposition 3 (Interest rate) In any existing stationary equilibrium, the interest rate
has to satisfy:

1 + r = 1
β
−

´
Et×A ν(et, a0)µt(det, da0)

β
´
Et×A u

′ (ct(et, a0))µt(det, da0) . (15)

Proof. The Euler equation of the agent’s program can be written as:

u′
(
ct(et, a0)

)
= β (1 + r)

ˆ
et+1∈Et+1

u′
(
ct+1(et+1, a0)

)
p̃(det+1|et) + ν(et, a0) (16)

Integrating over the whole population, the set of Euler equations (16) over the whole
distribution of agents yields:

ˆ
(et,a0)∈Et×A

u′
(
ct(et, a0)

)
µt(det, da0) =

ˆ
(et,a0)∈Et×A

ν(et, a0)µt(det, da0)

+β (1 + r)
ˆ

(et,a0)∈Et×A

ˆ
et+1∈Et+1

u′
(
ct+1(et+1, a0)

)
p̃(det+1|et)µt(det, da0).

Since (et+1, a0) 7→ u′ (ct+1(et+1, a0)) is assumed to be Lebesgue integrable, Fubini’s theo-
rem yields:

ˆ
(et,a0)∈Et×A

u′
(
ct(et, a0)

)
µt(det, da0) =

ˆ
(et,a0)∈Et×A

ν(et, a0)µt(det, da0)

β (1 + r)
ˆ

(et+1,a0)∈Et+1×A
u′
(
ct+1(et+1, a0)

) ˆ
et∈Et

p̃(det+1|et)µt(det, da0),

or using the recursive definition (14) of µt+1:
ˆ
Et×A

u′
(
ct(et, a0)

)
µt(det, da0) = β (1 + r)

ˆ
Et+1×A

u′
(
ct+1(et+1, a0)

)
µt+1(det+1, da0)

+
ˆ
Et×A

ν(et, a0)µt(det, da0)

Using stationarity, stated similarly to equation (9), then implies equality (15).
Loosely speaking, introducing a continuous state-space only changes the integral,

which is now a continuous sum over histories, while it is a discrete sum in the main text.
Proposition 3 is thus very similar to Proposition 1, and Corollaries 1 and 2 still hold.
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