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Abstract

When do optimal inflation and quantities differ significantly between Heterogeneous-Agent
(HA) and Representative-Agent (RA) models, and what are the underlying mechanisms? To
answer this question, we derive the jointly optimal fiscal-monetary Ramsey policy in HA and
RA models that incorporate both price and wage stickiness. We examine different sets of fiscal
tools and analyze both supply and demand shocks. Our findings show that HA economies
diverge significantly from RA economies when the severity of credit constraints varies over
time, which is the case for demand shocks but less so for supply shocks. Furthermore, inflation
dynamics differ between HA and RA economies in response to demand shocks, particularly
when fiscal policy is not employed as a stabilization tool over the business cycle. We identify
the relevant fiscal tools to reduce inflation volatility over the business cycle.

Keywords: Heterogeneous agents, wage-price spiral, inflation, monetary policy, fiscal
policy.
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1 Introduction

Heterogeneous-Agent (HA) models differ significantly from Representative-Agent (RA) models
because some agents in HA models face credit constraints and therefore have a high Marginal
Propensity to Consume (MPC), while unconstrained agents engage in time-varying precautionary
savings. The primary reason why monetary and fiscal policy implications (if any) differ between
these two types of models remains unclear. For instance, a high MPC can also be obtained
in a Two-Agent (TA) model, where one agent is always credit-constrained. In such models,
the volatility of certain instruments, such as the nominal interest rate, can differ from their
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counterparts in RA models, yet output and inflation dynamics may be very similar between TA
and HA models. In this paper, we show that HA and RA models generate different implications
for both monetary and fiscal policy due to time-varying precautionary savings, which arise
from unconstrained agents’ expectations of future credit constraints. In this case, the aggregate
demand for self-insurance varies over time. Optimal monetary policy must therefore account
for its effect on the opportunity cost of self-insurance through its impact on the real interest
rate. Optimal fiscal policy must consider its effects on insurance through redistribution and
public debt issuance. In both cases, HA and RA models differ. However, the extent to which
monetary policy influences self-insurance—beyond its role in ensuring price stability—depends
on the availability of fiscal tools. We precautionary saving is not time-varying, as in the TA
model, we find that the dynamics of aggregate quantities are very similar in HA and RA model.

We prove this set of results by deriving optimal fiscal and monetary policy in an heterogeneous-
agent (HA) model, after both demand and supply shocks, with both price and wage nominal
rigidities. In this environment, we study optimal monetary and fiscal policies, with various
sets of fiscal instruments, considering optimal Ramsey policy with commitment. Theoretically,
it is known that if enough fiscal instruments are available, optimal monetary policy is able
to implement price stability, and fiscal policy can use the fiscal instruments to implement the
optimal allocation and redistribution (see Correia et al. 2008 or LeGrand et al., 2022). We first
confirm this general result in this environment with both incomplete markets, sticky prices and
sticky wages. We determine a set of fiscal instruments, which ensure price stability as the optimal
outcome after both supply and demand shocks. We then use this benchmark environment to
answer two main questions. First, what are the conditions on fiscal policy that optimally generate
substantial deviations from price stability? Conversely, what are the fiscal instruments, whose
absence that imply the largest optimal price deviations? Second, we investigate the role of
heterogeneous agents in the design of optimal policies: When do representative-agent (RA) and
heterogeneous-agent (HA) economies have different implications for aggregate variables? We
provides three main contributions with respect to these questions.

First, considering demand shocks, time-varying labor tax and public debt are almost sufficient
instruments to generate price stability as an optimal outcome. Indeed, demand shocks do not
imply any change in the marginal product of labor. Therefore, they do not require a substantial
adjustment in the real wage. Although the labor tax involves distortions, there is no need to
deviate from price and wage stability, implying zero price and wage inflation close to zero (and
thus constant real wage).

Second, considering supply shocks, the story is different: labor tax and public debt do not
ensure price stability. These supply shocks can be interpreted as TFP shocks, or as shocks to
the price of inputs, such as energy price shocks for instance. Supply shocks change the marginal
productivity of labor and thus require an adjustment of the real wage. We show that this
adjustment can be obtained with both price and wage stability, when an specific fiscal instrument
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is optimally designed. This instrument is a wage -subsidy, which is a subvention (or a tax credit)
paid by firms to hire workers. It affects the real cost of labor, without having a direct impact on
the wage bargained by workers. This tool can be implemented via either a time-varying employer
social contribution, or a tax credit conditional on the total wage bill. It is noteworthy that such
instruments were massively used in Europe during the Covid-19 crisis to stabilize employment.
In Germany, it was called Kurzarbeit, while in France, this was called activité partielle policy.
The time-varying wage subsidy stabilizes the business cycle, without targeting specifically the
aggregate demand. For instance, the wage subsidy after a negative supply shocks generates an
increase in public debt, but contributes to decrease inflation, by decreasing the cost of inputs.
For this reason, we call these fiscal tools non-Keynesian stabilizers.

Finally, we find significant differences in the dynamics of aggregate variables between RA
and HA economies, mostly because of the dynamic of public debt. In RA economies, changing
public debt is a non-distorting tool to generate transfers, through interest payments, between the
(representative) agent and the government. In HA economies, such movements of public debt
are limited, because public debt is used by agents for self-insurance motives. As a consequence,
time-varying liquidity requirements by private agents is a driving force of public debt that is
specific to HA economies. Public debt dynamics is thus different in HA and RA economies and
the allocations are different at the first-order. In other words, HA and RA economies differ in
non-Ricardian environments due to self-insurance and not only due to redistribution. We find
that time-varying liquidity requirements are more important for demand (like discount factor
shocks) than supply shocks (like TFP shocks). As a consequence, HA and RA economies differ
more after demand shocks. This last result happens to be also valid in flexible price economies
but is magnified with nominal frictions.

Related literature. This paper belongs to the literature on optimal policy in heterogeneous
agent model on one side, and on wage-price spirals on the other side. Deriving optimal policy in
heterogeneous-agent models with aggregate shocks is a difficult theoretical and computational
task. Some papers consider numerical methods to solve for optimal path of the instruments
(Dyrda and Pedroni, 2022). Other papers rely on continuous-time techniques for the theoretical
derivation of the first-order conditions of the planner (Nuño and Thomas, 2022 among others).
Acharya et al. (2022) solve for optimal monetary policy using the tractability of the CARA-normal
environment without capital. Bhandari et al. (2021) quantitatively solve for optimal policies in
a new-Keynesian model with aggregate shocks. Yang (2022) solves for the optimal monetary
policy by optimizing on the coefficients of a Taylor rule. McKay and Wolf (2022) derive a general
quadratic-linear formulation to solve for optimal policy rules. McKay and Reis (2021) study
optimal automatic stabilizers in the context of the optimal replacement rate. Their main focus
is on the trade-off between insurance and incentives in the presence of an aggregate demand
effect. The mechanism we identify is different in that it directly affects the gap between the
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real wage and the marginal productivity of labor.In this paper, we use the tools of LeGrand
and Ragot (2022a) and the improvements of LeGrand and Ragot (2022b) to solve for optimal
fiscal and monetary policy with aggregate shocks. The gain of this approach is to allows to easily
solve for optimal policy with many tools and with various nominal frictions. On the theoretical
side, the Lagrangian approach pioneered in Marcet and Marimon (2019) enables us to derive
the first-order conditions of the Ramsey planner in an environment with both wage and price
rigidities.

Regarding the literature on wage-price spirals, models including both price and wage stickiness
have been studied in RA economies (Blanchard, 1986, Galí, 2015, chapter 6, or Blanchard and
Gali, 2007 among others). Erceg et al. (2000) study optimal monetary policy in this environment.
Chugh (2006) study both optimal monetary policy and an optimal labor tax. Recently, Lorenzoni
and Werning (2023) analyze more deeply optimal policy and the real wage dynamics in this
environment.

2 The environment

We consider a discrete-time economy populated by a continuum of size one of ex-ante identical
agents. These agents are assumed to be distributed along a set J , with the non-atomic measure
ℓ: ℓ(J) = 1.1

2.1 Risk

We assume that the agents face an idiosyncratic productivity risk. The productivity process,
denoted y, is assumed to take value in a finite set Y and to follow a first-order Markov chain with
transition matrix π = (πyy′)y,y′ . With wage w and labor supply l, an agent with productivity
y earns the labor income wyl. In each period, the fraction of agents with productivity y is
constant and denoted by ny. We normalize average productivity to 1, i.e., such that

∑
y nyy = 1.

The history of idiosyncratic productivity shocks up to date t for an agent i is denoted by
yti = {yi,0, . . . , yi,t} ∈ Yt+1, where yi,τ is the date-τ productivity. The measure of idiosyncratic
histories up-to-date t, denoted by θt, can be computed using the initial distribution and the
transition matrix.

Aggregate risks. In addition to the previous idiosyncratic risk, agents face an aggregate
supply shock, affecting either the economic TFP, denoted by Z, or demand shock, affecting
public spending G. We show in Section A that a shock on energy price is equivalent to a negative
shock to TFP for the relevant calibration. These aggregate shocks are persistent but are known
at period 0, and should thus be considered as MIT shocks.

1We follow Green (1994) and assume that the law of large numbers holds.
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2.2 Preferences

Households are expected-utility maximizers endowed with time-separable preferences and a
constant discount factor β ∈ (0, 1). In each period, households enjoy utility U(c, l) from the
consumption c of the unique consumption good of the economy and suffer from the disutility of
providing the labor supply l. We further assume that in each period, the instantaneous utility
is separable in consumption and labor: U(c, l) = u(c) − v(l), where u, v : R+ → R are twice
continuously differentiable and increasing. Furthermore, u is concave, with u′(0) = ∞, and v is
convex.

2.3 Labor taxes

For the sake of generality, and for theoretical reasons which we develop in Section 2.8 below,
we introduce a rich set of linear labor taxes. First, we assume that unions bargain over the
nominal wage rate, denoted by Ŵt. Workers pay a linear labor tax τLt on this income such that
their post-tax nominal wage is (1 − τLt )Ŵt. Second, firms pay an additional labor tax, τSt , which
implies a wedge between the labor cost per efficient unit of labor, W̃t, paid by firms and the
wage Ŵt bargained by workers. This additional tax can be thought of as an employer social
contribution that does not appear on the payroll of workers. Formally, the labor cost W̃t, the
bargained wage Ŵt and the tax τS verify the following relationship: Ŵt = (1 − τSt )W̃t. The tax
τSt will have an effect on labor demand that will be internalized by unions in their bargaining
strategy. Similarly, the tax τLt will have an effect on labor income that will also be internalized.
The difference between the two taxes is that τSt has a direct effect on employment for a given
bargained wage Ŵt but not on the wage Wt, whereas τLt has a direct effect on the wage Wt for a
given bargained wage Ŵt, but no direct effect on employment.2

2.4 Production

The specification of the production sector follows the New-Keynesian literature on price stickiness,
adapted to the previous tax structure. The consumption good Yt is produced by a unique profit-
maximizing representative firm that combines intermediate goods (yfj,t)j from different sectors
indexed by j ∈ [0, 1] using a standard Dixit-Stiglitz aggregator with an elasticity of substitution,
denoted εP :

Yt =
[ˆ 1

0
yfj,t

εP −1
εP dj

] εP
εP −1

.

2We call direct effect the partial equilibrium effect of each variable. In general equilibrium (with endogenous
income), these taxes obviously affect all variables through price variations.
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For any intermediate good j ∈ [0, 1], the production yfj,t is realized by a monopolistic firm and
sold at price pj,t. The profit maximization for the firm producing the final good implies:

yfj,t =
(
pj,t
Pt

)−εP

Yt, where Pt =
(ˆ 1

0
p1−εP
j,t dj

) 1
1−εP

.

The quantity Pt is the price index of the consumption good. Intermediary firms are endowed
with a Cobb-Douglas production technology and use only labor. The production technology
involves that l̃j,t units of labor are transformed into yfj,t = Zt l̃j,t units of intermediate good. Zt
is aggregate labor productivity. It is affected at period 0 by a shock ϵZ0 and it follows a AR(1)
process. Zt = ezt ,with

z0 = 1 + ϵZ0 and zt = ρZzt−1 for t ≥ 1, ρZ < 1.

Since intermediate firms have market power, the firm’s objective is to minimize production
costs, subject to producing the demand yfj,t. The cost function Cj,t of firm j is therefore
Cj,t = minl̃j,t

{w̃t l̃j,t}, subject to yfj,t = Zt l̃j,t, where w̃t = W̃t/Pt is the real overall wage rate.
The maximization implies the following mark-up:

mt = 1
Zt
w̃t. (1)

In addition to the production cost, intermediate firms face a quadratic price adjustment cost
à la Rotemberg when setting their price. Following the literature, the price adjustment cost is
proportional to the magnitude of the firm’s relative price change and equal to ψp

2

(
pj,t

pj,t−1
− 1

)2
.

We can thus deduce the real profit, denoted Ωt at date t of firm j:

Ωj.t =
(pj,t
Pt

−mt(1 − τYt )
)(pj,t

Pt

)−ϵ
Yt − ψP

2

(
pj,t
pj,t−1

− 1
)2

Yt − tYt ,

where tYt is a lump-sum tax financing the subsidy τY . Computing the firm j’s intertemporal
profit requires to define the firm’s pricing kernel. We follow Bhandari et al. (2021) and assume
a constant pricing kernel.3 The firm j’s thus sets its price schedule (pj,t)t≥0 to maximize its
intertemporal profit at date 0: max(pj,t)t≥0 E0[

∑∞
t=0 β

tΩj,t]. The solution is independent of the
firm type j and all firms in the symmetric equilibrium charge the same price: pj,t = Pt. Denoting
the price inflation rate as πPt = Pt

Pt−1
− 1 and setting τY = 1

εP
to obtain an efficient steady state,

we obtain the standard equation characterizing the Phillips curve in our environment:

πPt (1 + πPt ) = εP − 1
ψP

(mt − 1) + βEt
[
πPt+1(1 + πPt+1)Yt+1

Yt

]
, (2)

3Our own computations also show us that the quantitative impact of the pricing kernel is limited.
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where:

Yt =ZtLt (3)

The real profit is independent of the firm’s type and can be expressed as follows:

Ωt =
(
1 − ψP

2 (πPt )2
)
Yt − w̃tLt. (4)

2.5 Labor market: Labor supply and Union wage decision

Following the New Keynesian sticky-wage literature, labor hours are supplied monopolistically
by unions (Erceg et al. (2000)Chugh (2006) Hagedorn et al. (2019) or Auclert et al., 2022 among
others). There is a continuum of unions of size 1 indexed by k and each union k supplies Lkt hours
of labor at date t with nominal wage Ŵkt. Union-specific labor supplies are then aggregated into
aggregate labor supply by a competitive technology featuring a constant elasticity of substitution
εW :

Lt =
(ˆ

k
L

εW −1
εW

kt dk

) εW
εW −1

. (5)

The competitive aggregator demands the union labor supplies (Lkt)k that minimize the total
labor cost

´
k ŴktLk,tdk subject to the aggregation constraint (5), where Ŵkt is the bargained

nominal wage of the members of union k. The demand for labor of union k depends on the total
labor cost paid by the firm W̃kt: Lkt =

(
W̃kt

W̃t

)−εW , where W̃t =
(´

k W̃
1−εW
kt dk

) 1
1−εW is the total

nominal wage index. As the labor demand depends on relative wages, and W̃kt

W̃t
= Ŵkt

Ŵt

1−τS
t

1−τS
t

= Ŵkt

Ŵt
,

total labor demand can be written as:

Lkt =
(
Ŵkt

Ŵt

)−εW

Lt, (6)

where Ŵt =
(´

k Ŵ
1−εW
kt dk

) 1
1−εW is the bargained nominal wage index. Each union k sets its wage

Ŵkt so as to maximize the intertemporal welfare of its members subject to fulfilling the demand
of equation (6). We assume the presence of quadratic utility costs related to the adjustment of
the nominal wage and equal to ψW

2 (Ŵkt/Ŵkt−1 − 1)2dk. The objective of union k is thus:

max
(Ŵks)s

Et
∞∑
s=t

βs
ˆ
i

(
u(ci,s) − v(li,s) − ψW

2

(
Ŵks

Ŵks−1
− 1

)2)
ℓ(di),

subject to (6) and where ci,t and li,t are the consumption and labor supply of agent i. The
first-order condition with respect to Wkt thus writes as:

πWt (πWt + 1) = Ŵkt

ψW

ˆ
i

(
u′(ci,t)

∂ci,t

∂Ŵkt

− v′(li,t)
∂li,t

∂Ŵkt

)
ℓ(di) + βEt

[
πWt+1(πWt+1 + 1)

]
, (7)
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where the wage inflation rate is denoted by:

πWt = Ŵk,t

Ŵk,t−1
− 1.

The labor supply lit of agent i is the sum of her hours likt supplied to union k, summed over
all unions: lit =

´
k liktdk. Each union is assumed to request its members to supply an uniform

number of hours, such that: likt = Lkt. We thus deduce from (6):

Ŵkt
∂li,t

∂Ŵkt

= Ŵkt

∂
(´
k

(Ŵkt

Ŵt

)−εWLtdk
)

∂Ŵkt

= −εWLkt. (8)

To compute the derivative of consumption ∂ci,t

∂Ŵkt
, it should observed that it is equal to the

derivative of its net total income. The net total income of agent i writes as (1 − τLt )Ŵktyi,tli,t/Pt,
where τLt is the labor tax. Formally:

1
ci,t

∂ci,t

∂Ŵkt

= 1
Ŵkt

+ 1
li,t

∂li,t

∂Ŵkt

= 1
Ŵkt

− εW

Ŵkt

Lkt
li,t

Ŵkt
∂ci,t

∂Ŵkt

= (1 − εW )(1 − τLt )Ŵktyi,tli,t/Pt (9)

We focus on the symmetric equilibrium where all unions choose to set the same wage Ŵkt = Ŵt,
hence all households work the same number of hours, equal to lit = Lt. Combining (7) with the
partial derivatives (8) and (9), we deduce the following Phillips curve for wage inflation:

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW
(1 − τLt )ŵt

ˆ
i
yi,tu

′(ci,t)ℓ(di)︸ ︷︷ ︸
labor gap

)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

(10)
where ŵt = Ŵt/Pt is the real pre-tax wage.

2.6 Assets

The only asset is nominal public debt, whose supply size is denoted by Bt at date t, and which
pays off the pre-determined before-tax nominal interest rate it−1. Public debt is issued by the
government and assumed to be default free. The financial market clearing implies that the net
total savings of households, denoted At, must equal public debt:

At = Bt. (11)
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The corresponding real before-tax (net) interest rate for public debt, denoted by r̃t, is defined by:

r̃t = 1 + it−1
1 + πPt

− 1. (12)

2.7 Agents’ program

Each agent enters the economy with an initial endowment of public debt ai,−1 and an initial
productivity level yi,0. The joint initial distribution over public debt and productivity levels is
denoted Λ0. In later periods, each agent learns her productivity level yi,t, supplies labor, and
earns her savings payoffs. Since the labor supply Lt is chosen by unions, the labor income is
(1 − τLt )ŵtyi,tLt. The before-tax real financial payoff amounts to r̃tai,t−1.

We assume that agents pay two other taxes. First, a capital tax τ̂Kt is levied on interest
payment and implies a net asset payoff (1−τ̂Kt )r̃tai,t−1. Second, an income tax τEt is levied on total
income, which implies a post-tax total income equal to (1−τEt )

(
(1−τLt )ŵtyi,tLt+(1−τ̂Kt )r̃tai,t−1

)
.

We assume that the latter income tax τEt is not internalized by the unions, as the latter cannot
observe total income.4

Agents earn this net total income and use it together with their past savings to consume ci,t
and save ai,t. Their budget constraint can be expressed as follows:

ci,t + ai,t = ai,t−1 + (1 − τEt )
(
(1 − τ̂Kt )r̃tai,t−1 + (1 − τLt )ŵtyi,tLt

)
. (13)

To simplify the previous notation, we define the post-tax real interest and wage rates as:

rt = (1 − τEt )(1 − τ̂Kt )r̃t, (14)

wt = (1 − τEt )(1 − τLt )ŵt = (1 − τEt )(1 − τLt )(1 − τSt )w̃t. (15)

The agent’s program can be finally be written as:

max
{ci,t,ai,t}∞

t=0

E0

∞∑
t=0

βt (u(ci,t) − v(Lt)) , (16)

ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt, ai,t, (17)

and subject to the credit constraint ai,t ≥ −a, and the consumption positivity constraint ci,t > 0.
The notation E0 is an expectation operator over both idiosyncratic and aggregate risks. The
solution of the agent’s program is a sequence of functions, defined over ([−ā; +∞) × Y) × Yt ×Rt

4The justification of this tax is presented in the next section. Although playing a major theoretical role, it has
a modest quantitative impact, as we illustrate below.
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and denoted by (ct, at)t≥0, such that:5

ci,t = ct((ai,−1, yi,0), yti , zt), ai,t = at((ai,−1, yi,0), yti , zt). (18)

For the sake of simplicity, we will keep using the notation with the i-index. Denoting by νi,t the
discounted Lagrange multipliers of the credit constraint, the Euler equation corresponding to the
agent’s program (16) is:

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t. (19)

2.8 Government and market clearing conditions

The government has to finance an exogenous public good expenditure Gt, by raising a quite large
number of taxes and by issuing one-period riskless public debt. Gt is affected at period 0 by a
shock ϵG0 and it follows a AR(1) process. Gt = egt ,with

g0 = 1 + ϵG0 and gt = ρGgt−1 for t ≥ 1, ρG < 1.

The government raises three kinds of labor taxes: (i) a tax τSt based on labor cost w̃t and
paid by employers, (ii) a tax τLt based on bargained wage ŵt and paid by workers, and finally (iii)
a tax τEt based on total income and paid by workers. Importantly, the three labor instruments
are independent and not redundant. Indeed, on the one hand, τSt creates a wedge between the
labor cost and the bargained wage, while τLt and τEt create wedges between the bargained wedge
and the net wage. On the other hand, τLt is internalized by unions, while τEt is not. These three
taxes will play on different margins and will allow us derive our equivalence result below. Hence,
they should be understood as theoretical tools needed to generate price and wage stability. Each
tax will be removed in turn to consider more realistic fiscal settings and to assess how each fiscal
instrument contributes to inflation volatility.

In addition to capital and labor taxes and to public debt, the government also fully taxes
the firms’ profits, Ωt, which limits the distortions implied by profit distribution. We can now
express the government budget constraint. The government has to finance public spending and
the repayment of past public debt. Its resources consist of all labor taxes, capital taxes, corporate
profits, and newly issued public debt. We obtain:

Gt + 1 + it−1
1 + πPt

Bt−1 ≤ Ωt +Bt + τEt
(
(1 − τ̂Kt )r̃t

ˆ
i
ai,t−1ℓ(di) + (1 − τLt )ŵtLt

)
+ τ̂Kt r̃t

ˆ
i
ai,t−1ℓ(di) + τLt ŵtLt + τSt w̃tLt.

We can simplify the previous government budget constraint using the financial market clearing
5See e.g. Miao (2006), Cheridito and Sagredo (2016), and Açikgöz (2018) for a proof of the existence of such

functions.
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(11), the post-tax interest rate r̃t (12), and the profit definition (4):

Gt +
(
1 + (1 − τEt )(1 − τ̂Kt )

)
Bt−1 + (1 − τLt )(1 − τEt )ŵtLt ≤

(
1 − ψP

2 (πPt )2
)
Yt +Bt,

which using post-tax rate definitions (14) implies:

Gt + rtBt−1 + wtLt ≤
(
1 − ψP

2 (πPt )2
)
Yt +Bt −Bt−1, (20)

We finally express the financial market clearing condition and the economy resource constraints:
ˆ
i
ai,tℓ(di) = At = Bt, (21)

ˆ
i
ci,tℓ(di) +Gt =

(
1 − ψP

2 (πPt )2
)
ZtLt. (22)

Equilibrium definition. We can finally formulate our definition of competitive equilibrium.

Definition 1 (Sequential equilibrium) For any exogenous paths of TFP (Zt)t and of pub-
lic spending (Gt)t, a sequential competitive equilibrium is a collection of individual allocations
(ci,t, ai,t, νi,t)t≥0,i∈I , of aggregate quantities (Lt, At, Yt,Ωt,mt)t≥0, of price processes (wt, rt, r̃t, ŵt, w̃t)t≥0,
of monetary policy (it)t≥0, fiscal policies (τLt , τSt , τEt , τ̂Kt , Bt)t≥0, and inflation dynamics (πWt , πPt )t≥0

such that, for an initial wealth and productivity distribution (ai,−1, yi,0)i∈I , and for an initial
value of public debt verifying B−1 =

´
i ai,−1ℓ(di), we have:

1. given prices, the allocations (ci,t, ai,t, νi,t)t≥0,i∈I solve the agent’s optimization program
(16)–(17);

2. financial, and goods markets clear at all dates: for any t ≥ 0, equations (21) and (22) hold;

3. the government budget is balanced at all dates: equation (20) holds for all t ≥ 0;

4. firms’ profits Ωt and the mark-up mt are consistent with equations (1) and (4);

5. the price inflation path (πPt )t≥0 is consistent with the price Phillips curve (2), while the
wage inflation path (πWt )t≥0 is consistent with the wage Phillips curve (10);

6. the real and nominal rates (r̃t, it)t≥0 verify (12);

7. post tax rates (wt, rt, r̃t, ŵt, w̃t)t≥0 are defined in equations (14)–(15).

Social Welfare Function. Following LeGrand et al. (2022), we assume that the planner
maximizes a generalized social welfare function, where the weights on each period utility can
depend on the current productivity of the agent. The objective of the planner is thus:

W0 = E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit) − v(lit)

)
ℓ(di) − ψW

2 (πWt )2
]
. (23)
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This expression embeds the utilitarian case, where ω(y) = 1 for all y. This generalization of the
Standard Social Welfare Function is now used either in quantitative work, such as (LeGrand
et al., 2022, McKay and Wolf, 2022), or in more theoretical investigations, as a deviation from
the utilitarian case (Dávila and Schaab, 2022). It will be used to ease the simulations and
comparisons of economies in Section 5. We can define the notion of Ramsey equilibrium using
this notion of social welfare function.

Definition 2 (Ramsey equilibrium) A Ramsey equilibrium is the path of of monetary policy
(it)t≥0, fiscal policies (τLt , τSt , τEt , τ̂Kt , Bt)t≥0, which selects a competitive equilibrium, which is
maximizing the social welfare function (23).

A steady-state Ramsey equilibrium is a Ramsey equilibrium where aggregate real variables
(Lt, At, Yt,Ωt,mt)t≥0, prices (wt, rt, r̃t, ŵt, w̃t)t≥0, monetary policy (it)t≥0, fiscal policies (τLt , τSt ,
τEt , τ̂

K
t , Bt)t≥0, and inflation dynamics (πWt , πPt )t≥0 are constant.

2.9 Considering different fiscal systems: The economic experiment

The previous model has introduced five fiscal instruments and monetary policy (τLt , τSt , τEt , τ̂Kt , Bt)t≥0.
In what follows, we will determine the optimal path of each of them after both supply and
demand shocks. This rich fiscal system is also a theoretical device to understand distortions in
the HA economy with both price and wage stickiness. As will be clear below, this fiscal system
is the minimal one such that there is no deviation from price stability in all cases.

We assume that the economy starts from the steady-state situation where the fiscal system
is optimally determined. Then in period 0, the economy is hit either by a demand shock or
a supply shock. The whole paths of these shocks is known at period 0, and the planner sets
optimally its available instruments under commitment.

In what follows, we consider different fiscal systems, where only some fiscal instruments can be
optimally time-varying to smooth the effect of the shock. These experiments will help understand
the key margin for which HA and RA economies differ and for which the planner optimally
implements deviation from price stability. More precisely, we solve for optimal monetary policy
considering five economies:

1. Economy 1: The tools (τEt , τLt , τSt )t≥0 are optimally time varying.

2. Economy 2: τE is constant for t ≥ 0, and (τEt , τLt , τSt )t≥0 are optimally chosen.

3. Economy 3: τE and τS is constant for t ≥ 0, and (τLt )t≥0 are optimally chosen.

4. Economy 4: τE and τL is constant for t ≥ 0, and (τSt )t≥0 are optimally chosen.

5. Economy 5: Fiscal instruments and the interest rate follow rules.

12



In the first four cases, we assume that (Bt, τ̂Kt )t≥0 can be time-varying to focus on fiscal policy
affecting the labor market. The theoretical and quantitative analysis below will provide the
rationale for the first four economies. Economy 5 is studied in Section 5.5 to compare the optimal
outcomes with the ones implied by simple standard fiscal and monetary rules.

3 Optimal policies with a Representative Agent

This section first presents optimal policy in the Representative Agent (RA) economy, which will
be a useful benchmark.

The first best allocation

The first-best allocation is straightforward to determine. The program is actually static and
the planner solves in each period t, maxLt u (Ct) − v (Lt), subject to the resource constraint
Ct +Gt = ZtLt. For any Gt, Zt, the labor supply that solves this program satisfies:

Ztu
′(ZtLt −Gt) = v′(Lt).

The left-hand side is decreasing in Lt, while the right-hand side is increasing in Lt. As a
consequence, the previous equality uniquely determines the level LFBt . This optimal labor supply
is increasing in Gt and which is either decreasing in Zt (if the period utility function u is very
concave) or increasing in Zt if the utility function is not very concave.6

Optimal monetary and fiscal policy

We now consider the RA economy with both sticky prices and sticky wages and the instruments
(τLt , τSt , τEt , τ̂Kt , Bt)t≥0. The folllwing proposition summarizes the main results. We provide the
proof in Appendix.

Proposition 1 (Representative agent) In the RA economy

1. If the economy is hit by demand shock only (Gt), the first-best allocation can be implemented
in all four economies (Economy 1, 2, 3 and 4). Price and wage inflations are 0.

2. If the economy is hit by supply shocks (Zt), the first-best allocation can be implemented in
Economy 1 (where all fiscal tools are available) and Economy 2 (where τE is constant).
Price and wage inflation rates are then 0.

3. If the economy is hit by supply shock, price and wage inflation rates are not zeros in
economy 3 and 4, and the first-best allocation cannot be implemented.

6This is a standard result. To see this, assume Gt = 0 and a constant IES 1
σ

for u and a constant Frisch

elasticity φ for v then Lt = Z
1−σ

σ+1/φ

t .
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4. The path of public debt is undetermined in Economy 1.

Several comments are in order. First, there is clear difference between demand shocks and
supply shocks in the RA economies. For demand shocks, the first-best best can be implemented
without time-varying changes in taxes (Item 1 of the Proposition). The reason for this is that
public debt movements and capital taxes can move optimally to generate resources for the
government, who can then finance any stream of public spending. This is a standard outcome of
the front-loading of capital tax. The representative agent provides resources to the government
by paying interests to the government on the debt it is induced. As a consequence, public debt
is negative in these economies. For demand shocks, in all economies the optimal price and wage
inflation rates are 0.

Second, for supply shocks, the first-best allocation can be implemented in Economies 1 and 2
(Item 2 of the Proposition). The proof is simple to summarize. Optimality imposes that the real
post-tax real wage wt is equal to the marginal product of labor, such that the labor supply is
optimal. In addition, the wage bargained by the union ŵt must be constant to avoid utility cost.
The set of fiscal instruments is sufficient to implement such an set of wages. Indeed, fiscal policy
allows the planner to decouple the post-tax and bargained wages, since wt = (1 − τLt )(1 − τEt )ŵt
and ŵt = (1 − τSt )w̃t. Setting (1 − τLt )(1 − τEt ) = Zt and 1 − τSt = 1/Zt implies a constant
bargained wage ŵt = 1 and efficient wages wt = w̃t = Zt. Observe that in this situation,
(1 − τLt )(1 − τEt ) and 1 − τSt move in opposite direction.

In Economies 3 and 4, the first-best allocation cannot be implemented for supply shocks, as
tools are missing to implement the strategy of the previous paragraph (Item 3 of the Proposition).
Movements of price and wage inflation will be used to improve the allocation. The rational
of the deviation from price stability for supply shocks is to affect the real post-tax wage rate
wt = Wt/Pt to bring it closer to the marginal productivity of labor Zt. We develop further these
explanations in Section 5, where we simulate these economies.

Finally, the planner has “too many” tools in Economy 1in the RA case (Item 4 of the
Proposition): any path of public debt is consistent with the first-best allocation, when taxes
adequately moves, for both demand and supply shocks. In Economy 2 (where income tax τE is
constant), the path of public debt is uniquely determined.

4 Optimal policies with Heterogeneous Agents

We now consider heterogeneous-agent economies and derive optimal policies for both supply and
demand shocks, for the four fiscal systems discussed above (Economies 1 to 4). The Ramsey
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planner’s program is

max
(τL

t ,τ
S
t ,τ

E
t ,π

P
t ,π

W
t ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

∞∑
t=0

βt
[ˆ

i
ω(yit)

(
u(cit) − v(L)

)
ℓ(di) − ψW

2 (πWt )2
]
,

(24)

Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt ≤

(
1 − ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,tℓ(di), (25)

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt, (26)

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0, (27)

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t, (28)

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW

wt
1 − τEt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
, (29)

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τLt )(1 − τSt )(1 − τEt )

− 1) + βEt
[
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

]
, (30)

(1 + πWt ) wt−1
1 − τLt−1

= wt
1 − τLt

(1 + πPt ), (31)

and subject to the positivity of consumption choices, and initial conditions.
The constraints in the Ramsey program include: the governmental and individual budget

constraints (25) and (26), the individual credit constraint (and related constraints on νi,t) (27),
the individual Euler equations (28), the Phillips curves (29) and (30), the relationship (31)
between price and wage inflation rates. taxes and the nominal interest can be recovered from the
allocation, using the relationships (12) and (14).

This economy faces different frictions, which are worth summarizing. The monetary econ-
omy features two sets of market imperfections. The first set is related to the goods market.
Intermediary firms enjoy a monopoly power, which implies a price markup mt that can differ
from one. There is also a Rotemberg cost for price adjustment, which prevents firms from freely
setting their price. Note that the good market imperfections are complementary: one vanishes
when the other is absent, as can be seen from the price Phillips curve (2). The second set of
imperfections is related to the labor market. The union implies that the labor supply of agents is
not set optimally, while the Rotemberg cost for wages prevents unions from freely setting wages.
Note that in the absence of Rotemberg cost, the labor supply still remains sub-optimal, as it
remains set at the union level. Without Rotemberg cost, the equation characterizing the choice
of the labor supply (common to all agents) would be v′(Lt) = wt

´
i yi,tu

′(ci,t)ℓ(di), while it would
be v′(li,t) = wtyi,tu

′(ci,t), if agents were able to choose their individual labor supply li,t. This
sub-optimal common labor choice will play a major role in our equivalence results below.

To better understand the dynamics of the economy, it is worth formulating the Ramsey
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problem recursively. 7.Some notations are in order. First, we denote as λ the current lagrange
multiplier on Euler equations and as λ−1 the Lagrange multiplier of the previous peroid.

Denote as Λ (a, λ−1, y) the joint distribution measure over wealth, Lagrange multipliers and
productivity level. In more technical terms, it is a probability measure over the Borel σ−algebra
R+ × R × Y . For any function f , (and to simplify notations we note as)

´
f (a, λ, y) dΛ (a, λ, y)

for
∑
y∈Y
´
R+×R f (a, λ, y) Λ (da, dλ, y).

Then:

V
(
Λ (a, λ−1, y) , τL−1, w−1, G, Z, γP,−1, γW,−1, B

)
= min
µ,µB ,γP ,γW ,λ,Λ

max
(τL,τS ,τE ,πP ,πW ,w,r,L,(c,a′,ν)i)

ˆ
(a,λ,y)

ω(y)
(
u(c) − v(L) − ψW

2 (πW )2
)
dΛ (a, λ−1, y)

−
ˆ

(a,λ−1,y)
(λ− (1 + r)λ−1)u′(c)dΛ (a, λ−1, y)

− (γW − γW−1)πW (1 + πW ) + εW
ψW

γW

(
v′(L) − εW − 1

εW

w

1 − τE

ˆ
(a,λ−1,y)

yu′(c)dΛ (a, λ−1, y)
)
L

− (γP − γP,−1)πP (1 + πP )ZL+ εP − 1
ψP

γP

(
w

(1 − τL) (1 − τE) (1 − τS) − Z

)
L

+ Λ
(

(1 + πW ) w−1
1 − τL−1

− w

1 − τL
(1 + πP )

)

− µ

(
(1 − ψP

2 (πP )2)ZL+B′ −G− (1 + r)B − wL

)
+ µB

(
B′ −

ˆ
(a,λ,y)

a′dΛ (a, λ, y)
)

+ V
(
Λ′ (a′, λ, y′) , τL, w,G′, Z ′, γP , γW , B

′
)

subject to the individual budget constraint and the complementarity slackness conditions:

c = (1 + r)a− a′ + wyL

a′ ≥ −a, ν(a′ + a) = 0,

ν = u′(c) − βE
[
(1 + r′)u′(c′)

]
,

ν ≥ 0

To simplify notations, denote as Xagg :=
(
B,Λ (a, λ−1, y) , τL−1, w−1, G, Z, γP,−1, γW,−1

)
. For

individual agents, the solution of this probelm is the policy rules

c (a, y,Xagg) , a′ (a, y,Xagg) , ν (a, y,Xagg) , λ′ (a, λ, y,Xagg) .
7This formulation is used to present some intuitions. We solve the first-order conditions of the planner in the

sequential representation to avoid the difficult discussion of the existence of a recursive equlibrium.
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An important restriction is that these policy rules don’t depend on on λ, as ca be seen from
sequential problem. The distribution of Lagrange multiplier Λ (a, λ−1, y) is important however
for each households, as it helps forecasting the value of the instrument of the planner.

The law of motion of the distribution is the following. For any set A′ × Ψ′ ⊂ R+ × R, the
next period probability is

Λ′ (A′ × Ψ′, y′) =
∑
y

Πy,y′

ˆ
{(a,λ)∈R+×R|a′(a,λ,y,Xagg)∈A′ and λ(a′(a,λ,y,Xagg)∈Ψ′)}

Λ (da, dλ, y)

Roadmap. To decompose the different effects at play, we perform the experiment described in
Section 2.9 in the context of the RA economy: the economy starts in period 0 from the Ramsey
steady-state distribution of the HA economy (defined in 2) and is then hit once by a negative
persistent productivity shock. We hence focus on so-called MIT shocks. We consider the same 5
economies as in Section 2.9.

To simplify the derivation of first-order conditions, we use some aspects of the methodology
of Marcet and Marimon (2019) used in LeGrand et al. (2022), which is sometimes called the
Lagrangian method (Golosov et al., 2016), applied to incomplete-market environments. This
methodology connects to the public finance literature – that we further explain in the different
environments listed above.

The summary is provided in Table 2 in Section 4.2. Section 5 provides a quantification of the
different mechanisms.

4.1 The flexible-price economy

First, to derive the benchmark Ramsey allocation, we study the flexible-price economy featuring
no price- and no wage-adjustment cost. In this economy, all workers are assumed to work the
same number of hours and the planner is assumed to be able to directly choose this common
labor supply.8 The firms make no profit and we thus have mt = 1. In addition, monetary policy
has no role has price are fully flexible, and the real interest rate is determined in equilibrium.

To save some space, we provide the program in Appendix C.1, and focus here on the
methodology and the main results. First, we denote by βtλi,t the Lagrange multipliers of the
Euler equations (28) of agent i at date t. The Lagrange multiplier of the government budget
constraint is βtµt. (25) with πPt = 0. We can then express the intertemporal Lagrangian of the
program, denoted by L. From this Lagrangian, we can define ψFPi,t as:

ψFPi,t := ∂L
∂ci,t

,

which is the value for the planner to transfer one extra unit of consumption good to agent i
8It is also possible to solve the model where the planner can differentiate hours across agents. The allocation is

very different from the market one, and it it thus a useless benchmark.
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in period t.9 To some extent, this quantity can be understood as the planner’s version of the
agent’s marginal utility of consumption. We call this amount, the social valuation of liquidity for
agent i. The expression of ψFPi,t is:

ψFPi,t := ωitu
′(ci,t)︸ ︷︷ ︸

direct effet

− (λi,t − (1 + rt)λi,t−1)u′′(ci,t)︸ ︷︷ ︸
effect on savings

. (32)

We add the upper-script FP to refer to flexible price, as the nature of the friction will change
the expression of the valuation of liquidity for agents i. As can be seen in equation (32), this
valuation consists of two terms. The first is the marginal utility of consumption ωitu′(ci,t), which
is the private valuation of liquidity for agent i multiplied by the current weight of agent i. The
second term in (32) takes into consideration the impact of the extra consumption unit on saving
incentives from periods t − 1 to t and from periods t to t + 1. An extra consumption unit
makes the agent more willing to smooth out her consumption between periods t and t+ 1, and
thus makes her Euler equation (either nominal or real) more “binding”. This more “binding”
constraint reduces the utility by the algebraic quantity u′′(ci,t)λi,t. The extra consumption unit
at t also makes the agent less willing to smooth her consumption between periods t− 1 and t

and therefore “relaxes” the constraint of date t− 1. This is reflected in the quantity λi,t−1.
This marginal valuation ψFPi,t has the same economic meaning as the Generalized Social

Marginal Welfare Weights (GSMWW) introduced by Saez and Stantcheva (2016), which they
denote as gi. It is the marginal valuation, which allows one to assess the welfare effect of a
marginal change in tax systems.10 This quantity appears in planner’s first-order conditions. For
instance, the FOC with respect to the labor supply Lt is:

ˆ
i
ωi,tℓ(di)v′(Lt) = Zt

ˆ
i
yi,tψ

FP
i,t ℓ(di), (33)

which has to be compared to v′(li,t) = wtyi,tu
′(ci,t) when agents individually decide of their labor

supply. As in the individual FOC, the planner equalizes the marginal cost of one extra unit of
labor to the marginal benefit, but there are three differences. First, since the labor supply is
common to all agents, the planner has to take into account all individual situations, and hence
needs to aggregate over the whole population. Second, the planner does not value marginal
consumption through marginal utility as agents but through the marginal valuation of liquidity
ψFPi,t . Finally, the planner does not value the marginal benefit of labor supply with the net wage
wt but but the marginal productivity Zt.

9To simplify the notation, we keep the index i, but the sequential representation (referring to histories and not
the identity of agent i) can be derived along the lines of equation (18).

10The corresponding expression, following Saez and Stantcheva (2016) notation, in a static environment would
thus be

´
t
giyiℓ(di) = µ. In a dynamic setting, it appears that ψi,t is not a sufficient statistics for agents i, and

that the knowledge of the marginal utility of agent i is necessary to determine optimal policy (see equation (56) for
instance). Note that compared to Saez and Stantcheva (2016), the elasticity of labor supply does not appear in the
formula for taxation, because labour supply is determined by demand (as agents are not on their labor supply).
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In addition to ψFPi,t , another key quantity is the Lagrange multiplier, µt, on the governmental
budget constraint. The quantity µt represents the marginal cost in period t of transferring one
extra unit of consumption to households. Therefore, the quantity ψi,t − µt can be interpreted as
the “net” valuation of liquidity. This is from the planner’s perspective, the benefit of transferring
one extra unit of consumption to agent i, net of the governmental cost. We thus define:

ψ̂FPi,t := ψFPi,t − µt. (34)

The interpretation of first-order conditions is greatly clarified by expressing them using ψ̂i,t rather
than the multiplier on Euler equations, λi,t. For instance, the first-order condition with respect
to the post-tax wage rate wt, is: ˆ

i
ψ̂FPi,t yi,tℓ(di) = 0. (35)

The planner sets the labor tax (and thus the real wage) so as to tradeoff on the one hand the
resources obtained from raising taxes (equal to the shadow price multiplied by labor supply µtLt)
and on the other hand benefits of higher taxes, which depends on the productivity yi for agent i,
and on the marginal valuation ψ̂i,t.

The heterogeneous-agent model provides (with some obvious restrictions) some additional
dynamic constraints on these valuation for the planner. For instance, we show that dynamics of
this valuation for unconstrained agents is:

ψ̂FPi,t = βEt
[
(1 + rt+1)ψ̂FPi,t+1

]
,

which can be seen as a generalized consumption Euler equation for the planner and not for
agents. We derive all first-order conditions in Appendix C.1. We use this allocation to derive our
equivalence results in the next section.

4.2 The sticky price economy

We now solve for optimal policy in an economy plagued with two nominal frictions, where the
planner has use all fiscal and monetary instruments. The Ramsey planner can be written as:

max
(τL

t ,τ
S
t ,τ

K
t ,Bt,Tt,πP

t ,π
W
t ,wt,rt,Ωt,it,Lt,(ci,t,ai,t,νi,t)i)t≥0

W0, (36)

subject to equations (23)–(31). We can state our main equivalence result.

Proposition 2 (An equivalence result) In the HA economy,

– when all instruments (τEt , τSt , τLt , τKt , Bt, it) are optimally chosen, the planner exactly
reproduces the flexible-price allocation and the inflation on prices and wages is null in all
periods, for both supply and demand shocks.
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– When τEt = 0, and the other instruments (τSt , τLt , τKt , Bt, it) are optimally chosen, the
planner implements πPt = 0 but πWt ̸= 0.

– When τEt = τSt = 0 and the other instruments (τLt , τKt , Bt, it) are optimally chosen, the
planner implements πPt ̸= 0 and πWt ̸= 0.

Proposition 2 generalizes the equivalence result of Correia et al. (2008) and Correia et al.
(2013) for representative agent economies and LeGrand et al. (2022) for heterogeneous-agent
economy to the case where there are both sticky prices and sticky wages. Interestingly, compared
to LeGrand et al. (2022), we need two additional instruments (τEt , τSt ), whereas we introduce one
additional nominal constraint. Indeed, we need one instrument to prevent wage inflation (which
destroys resources) and another one to reproduce the flexible price labor supply and neutralize
the market power of unions. In the presence of a sufficiently large fiscal system, monetary policy
has no role but price stability. Importantly, the result requires the presence of two labor taxes.
The first labor tax τS (internalized by the planner) enables the planner to “isolate” the pre-tax
rate w̃t that is determined by the allocation (with a zero price inflation) from the union wage
ŵt that is determined by the inflation path (πWt )t. Removing τS as an independent instrument
imposes a constraint between the factor price w̃t and the wage inflation path. In other words,
the planner would have to balance the effects of price inflation (determining w̃t) and of wage
inflation (determining ŵt). The second labor tax τEt enables the planner to simultaneously set
the labor supply optimally (as in equation (33)) and close the wage gap in the wage Phillips
curve. Removing τEt would imply that the planner would need to tradeoff two inefficiencies: (i)
the sub-optimal labor supply due the market power of unions and (ii) the cost of wage inflation.
Should one of these two instruments be removed, Proposition 2 would not hold anymore and the
economy would feature positive inflation on wages or on prices.

Overall, the first item of Proposition 2 rationalizes our tax system, which is the minimal tax
system for which price stability is optimal.11

The second and third items of Proposition 2 characterizes the impact of removing τE and
then τS as independent instruments for the planner. When we remove the income tax τEt , the
planner still implements price stability, but now wage inflation is not constant after a TFP shock.
This comes from the fact that the planner cannot close the wage gap of the wage Phillips curve
and optimally set the common labor supply. Due to union labor market power, closing the wage
gap would imply an inefficient labor supply. The planner chooses to change the number of worked
hours along the business cycle by allowing an non-zero wage inflation. The planner thus trades
off a more efficient labor supply at the cost of a quadratic wage adjustment.

Finally, when we remove both τEt and τSt , both price and wage inflation move along the
business cycles. Indeed, in addition to the previous mechanism for τEt , removing τS prevents the

11More precisely, other tax systems could correspond to price and wage stability. For instance, it could be
possible to consider time-varying consumption tax as in Correia et al. (2008). However, the number of independent
instruments would not be smaller. We consider our tax system to be not unrealistic, at least in some countries.
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planner from closing the price gap and to set the labor cost to marginal productivity of labor.
The planner chooses to use a non-zero price inflation to change the cost of labor.

The expression of the social value of liquidity actually depends on the instruments of the
planner. For instance, in the case where τEt = τSt = 0, such that the only instruments are
(τLt , τKt , Bt, it), the expression of the social valuation of liquidity for agent i is:

ψESi,t := ωitu
′(ci,t)︸ ︷︷ ︸

direct effet

− (λi,t − (1 + rt)λi,t−1)u′′(ci,t)︸ ︷︷ ︸
effect on savings

(37)

− εW − 1
ψW

γW,twtLtyi,tu
′′(ci,t)︸ ︷︷ ︸ .

effect on wage inflation

Compared to the expression (32) of ψFPi,t in the flexible price economy, the expression of ψESi,t
features a third effect that comes from the fact that the wage Phillips curve is a constraint for the
planner. Indeed, in this case, the planner does not close the gap and the wage Phillips curve is a
constraint for the planner, which implies the presence of the corresponding Lagrange multiplier
γW,t. If the planner increases the consumption of agents i in period t, this will change the
incentives to work and thus the union incentives to affect the wage dynamics. This is captured in
the third term of equation (32). Furthermore, this new expression of ψFPi,t still verifies Euler-like
equation for unconstrained agents: ψ̂ESi,t = βEt

[
(1 + rt+1)ψ̂ESi,t+1

]
, where ψ̂ESi,t = ψESi,t − µESt .

Finally, these deviations to price or wage stability still need to be quantified in the quantitative
section, so as to assess the economic relevance of the various instruments at play.

4.3 Comparing HA to RA

Table 1 summarizes the effect of missing instruments for demand shocks in both RA and HA
economies.

Time-varying labor taxes RA HA

τL + τS + τE

πP = 0 and πW = 0
(first-best alloc.)

πP = 0 and πW = 0
(flexible-price alloc.)

τL + τS πP = 0 and πW ̸= 0

τS πP ̸= 0 and πW ̸= 0

τL πP ̸= 0 and πW ̸= 0

Table 1: Price and wage inflation for demand shocks and for different instruments, Representative
Agent economy (RA) and Heterogeneous-agent economy (HA).

Table 2 summarizes the effect of missing instruments for supply shocks.
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Time-varying labor taxes RA HA

τL + τS + τE πP = 0 and πW = 0
(first-best alloc.)
πP = 0 and πW = 0
(first-best alloc.)

πP = 0 and πW = 0
(flexible-price alloc.)

τL + τS πP = 0 and πW ̸= 0

τS πP ̸= 0 and πW ̸= 0
πP ̸= 0 and πW ̸= 0

πP ̸= 0 and πW ̸= 0

τL πP ̸= 0 and πW ̸= 0

Table 2: Price and wage inflation for supply shocks and for different instruments, Representative
Agent economy (RA) and Heterogeneous-agent economy (HA).

5 Quantitative analysis of optimal policies

This section quantifies the inflation dynamics under the different assumptions concerning the set
of instruments available to the planner. The objective is to identify the most relevant instruments
to stabilize inflation in HA models, among the ones presented in Table 2 and to understand
how supply shocks differ from demand shocks. The calibration is described in Section 5.1. We
explain how to compute optimal policies in HA economies in Section 5.2. We investigate supply
shocks in Section 5.4 and demand shocks in Section 5.3. Finally, Section 5.5 presents the inflation
dynamics with exogenous fiscal and monetary rules.

5.1 The calibration and steady-state distribution

Preferences. The period is a quarter. The discount factor is β = 0.99, and the period utility
function is: c1−σ−1

1−σ − χ−1 l1+1/φ

1+1/φ . The Frisch elasticity of labor supply is set to φ = 0.5, which
is the value recommended by Chetty et al. (2011) for the intensive margin in HA models. The
scaling parameter is χ = 0.01, which implies an aggregate labor supply of roughly 1/3.

Technology and TFP shock. The production function is: Y = ZL. The TFP process is a
standard AR(1) process, with Zt = exp(zt) and zt = ρzzt−1, for t ≥ 1, and z0 < 0 is the period 0
negative TFP shock. We set ρz = 0.95,which the standard quarterly persistence.

Idiosyncratic risk. We use a standard productivity process: log yt = ρy log yt−1 + εyt , with
εyt

iid∼ N (0, σ2
y). We calibrate a persistence of the productivity process ρy = 0.994 and a standard

deviation of σy = 0.06. These values are consistent with empirical estimates (Krueger et al.,
2018), and generates a steady-state Gini of wealth of 0.78, which is again in line with the data.12

Finally, we use the Rouwenhorst (1995) procedure to discretize the productivity process into 10
idiosyncratic states with a constant transition matrix.

12The Gini of wealth is 0.78 using the SCF data in 2007, before the 2008 Great Recession.
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Steady state taxes and public debt. We first solve the model with constant exogenous
taxes and explain below the choice of the Social Welfare Function (SWF). We first assume that
steady-state taxes are 0, except for the labor tax τL: τE = τS = 0 and τL = 16%. This last
value (together with the value of public debt explained below) implies that public spending over
GDP is 15, which is close to the US value in 2007. The amount of public debt (which is the only
asset here) is set to the annual value of 1.28. As public debt is the only asset in our economy, we
target this amount to obtain an average Marginal Propensity to Consume (MPC) of 0.3.13

Monetary parameters. Following the literature and in particular Schmitt-Grohé and Uribe
(2005), we assume that the elasticity of substitution is εP = 6 across goods and εW = 21 across
labor types. The price adjustment cost is set to ψP = 100, such that the slope of the price
Phillips curve is εP −1

ψP
= 5% (see Bilbiie and Ragot, 2021, for a discussion and references). The

wage adjustment cost is set to ψW = 2100, such that the slope of the wage Phillips curve is 1%,
assuming wages to be stickier than prices.14 Finally, as there is no inflation on prices or wages at
the steady state: πP = πW = 0, these coefficients only matter in the dynamics.

Table 3 provides a summary of the model parameters.

Calibration of the representative agent economy. The calibration of the RA economy
considers the same preference parameters as in the HA economy. We denote with upper-script RA
(HA) the allocation in the RA (HA) economy. In the RA economy, the steady-state labor supply
LRA (with πW = 0 ) is determined by v′(LRA) = εW −1

εW
(1 − τL)u′(cRA). Due to consumption

inequality and the convexity of marginal utility, the average marginal utility in the RA economy is
lower than the one in the HA economy. As a consequence, for the same parameters LHA > LRA.

To consider comparable economies, we set public debt (BRA) and public spending (GRA), in the
RA economy such that public-debt-to GDP and public-spending-to-GDP are identical in the two
economies: BRA/Y RA = BHA/Y HA and GRA/Y RA = GHA/Y HA.

5.2 Simulating optimal policies in the HA economies

To investigate the optimal dynamics of the model, we recall that we perform the following
experiment – which is standard in the New Keynesian RA literature, but which must be adapted
to the HA case. We first solve for the optimal policy for a given set of instruments and consider
the steady-state allocation – which is the long run allocation in the absence of any aggregate
shock. We then assume that the economy starts from the Ramsey steady-state and we then
implement a period-0 transitory shock, which is either supply or demand driven. This procedure

13We thus adopt a liquid one-asset liquid wealth calibration to match a realistic MPC (Kaplan and Violante,
2022).

14We have performed sensitivity analysis regarding these coefficients. Our qualitative results appear not to be
sensitive to these values, even if inflation and wage volatility increases with the slopes of Phillips curves.
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Parameter Description Value Target

Preference and technology

β Discount factor 0.99 Quarterly calibration
σ Curvature utility 2
ā Credit limit 0
χ Scaling param. labor supply 0.01 L = 1/3
φ Frisch elasticity labor supply 0.5 Chetty et al. (2011)

Shock process

ρy Autocorrelation idio. income 0.993 Krueger et al., 2018
σy Standard dev. idio. income 6% Gini = 0.78
ρz Autocorrelation TFP shock 0.95

Tax system

τL Labor tax 16% G/Y = 15
τS ,τE ,τK Other tax 0%
B/Y Public debt over yearly GDP 128% MPC = 0.3
G/Y Public spending over yearly GDP 15% Targeted

Monetary parameters

εp Elasticity of sub. between goods 6 Schmitt-Grohé and Uribe (2005)
ψp Price adjustment cost 100 Price PC 5%
εw Elasticity of sub. labor inputs 21 Schmitt-Grohé and Uribe (2005)
ψw Wage adjustment cost 2100 Wage PC 1%

Table 3: Parameter values in the baseline calibration. See text for descriptions and targets.

allows us to quantify how the economy is perturbated from that the steady state before converging
back to the latter.

The steady state crucially depends on the Social Welfare Function used in the Ramsey
program, as well as on the tools that the planner has access to. To overcome this difficulty and
to start from the same steady state in all cases, we use the inverse optimal taxation approach, as
in Heathcote and Tsujiyama (2021) and LeGrand and Ragot (2025). More precisely, we consider
the same steady-state fiscal instruments, defined by τS = τK = 0, and τL > 0, and estimate the
weights of the SWF for each set of fiscal tools to ensure that this steady state is optimal. Indeed,
each instrument of the planner generates a first-order condition, which imposes one restriction
on the SWF.15We then choose the SWF satisfying these restrictions, which is the closest one
to the utilitarian SWF (where all weights are equal). We also verify that the SWF does not
quantitatively affect the dynamics of the allocation at the first order.

15As in standard New Keynesian models, optimal steady-state price and wage inflation is 0, whatever the social
welfare function. As a consequence, steady-state price stability does not impose any restriction on the SWF.
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The Ramsey problem in HA models cannot be solved with simple simulation techniques.
Indeed, the Ramsey equilibrium is now a joint distribution across wealth and Lagrange multipliers,
which is a high-dimensional object. While the steady-state values of Lagrange multipliers is
already difficult to compute, the Ramsey solution actually requires the dynamics of this joint
distribution. For this reason, we use the truncation method of LeGrand and Ragot (2022a) to
determine the joint distribution of individual wealth and Lagrange multipliers.16 The accuracy of
optimal policies has been analyzed in LeGrand and Ragot (2023) for both the steady state and
the dynamics. In addition, an improvement to efficiently reduce the state space is provided in
LeGrand and Ragot (2022b). We detail the calculations in Appendix, and refer to these papers
for details about the method.

To find the steady-state values of the Lagrange multipliers and SWF for a given fiscal policy,
we use the following algorithm:

1. Set a truncation structure (a maximum truncation length N) and set instrument values.

2. Solve the steady-state allocation of the full-fledged Bewley model with the given instrument
values, using standard techniques.

3. Consider the truncated representation of the economy, i.e., aggregate over truncated
histories.

4. Compute the steady-state Ramsey solution in truncated economy

(a) Derive first-order conditions of the planner for each instrument in the truncated
representation.

(b) Compute the SWF weights that are the closest to 1, for which all the planner’s FOCs
hold.

(c) Compute associated Lagrange multipliers.

(d) The truncated representation, together with the fiscal instruments, the estimated
SWF, and Lagrange multipliers is a steady-state optimal Ramsey allocation for the
truncated representation.

5. Compute the optimal dynamics of instruments and allocation in the truncated economy
using the first order conditions of the planner – as is standard in any finite state space
model.

We use the refined truncation approach, with a number of length for the refinement equals to
N = 8. We check that the results do not depend on the choice of the truncation length. As in
LeGrand and Ragot (2022a), the truncation provides accurate results, thanks to the introduction
of the ξs parameters. We check that the dynamics does not depend on the truncation length.

16Optimizing on simple rules in the spirit of Krusell and Smith (1998) is also hard to implement as their are
many independent instruments.
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5.3 Optimal inflation and fiscal policy: the case of demand shocks

We solve for the optimal fiscal and monetary policies in different economies. We perform an
exhaustive investigation with two driving questions: (i) When does optimal policy in the RANK
and the HANK economies differ? (ii) When does monetary policy optimally deviate from price
stability? We report in Figure 1 the simulation outcomes for negative negative demand shocks
and for three key variables. These three variables summarize the allocation, which is provided in
Appendix. We represent the evolution of GDP, price inflation, and wage inflation for the RA
agent (in blue) and the HA agent (in red). As productivity is assumed to be 1 at the steady
state, GDP is also the labor supply in this economy.

We solve for optimal policies in the RANK and HANK economies and compare them. Finally,
we also solve for monetary policy with various fiscal systems, which allows one to identify which
missing fiscal tools are key for the deviation from price stability. More precisely, we consider
four different fiscal systems: 1) when (τEt , τSt , τLt ) are optimally time-varying , 2) when (τSt , τLt )
are optimally time-varying, 3) when (τLt ) is optimally time-varying and finally 4) when (τSt ) is
optimally time-varying. In all cases, public debt Bt and capital taxes are optimally chosen, and
they satisfy the governmental budget constraint.

Economy 1: Optimal τE , τS , τL Economy 2: Optimal τS , τL

Economy 3: Optimal τL Economy 4: Optimal τS

Figure 1: Summary results for a positive demand shock, for the 4 economies, comparing the
Heterogeneous-Agent economy (HA) and the Representative-Agent economy (RA).

Panel 1 first plots the economy when all instruments (τEt , τSt , τLt ) are optimally time-varying.
First, it confirms the theoretical results that price inflation and wage inflation are optimally 0 in
this environment. In addition, it appears that there is no quantitative difference between the RA
and the HA economy in this case. Panel 1 will thus be our benchmark to assess the deviations
generating differences between HA and RA and form price stability.

Panel 2 reports the same variable for the same shock, but when τE is constant and equal to
its steady-state value. One observes a difference between HA and RA economy. This difference
also appears in the two other panels. Anticipating the analysis below, the difference between HA
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and RA economies comes from the path of public debt which is very different in HA economies,
as public debt is used to for self-insurance motives.We observe only a tiny deviation from
price-stability.

Panel 3 represents the economy with only time-varying (τLt ) and both τEand τS kept at their
steady-state values. The outcomes in Panel 3 are similar to those obtained in Panel 2, indicating
that the variable τLt is important for price stability, but τS less so. This is confirmed in Panel 4,
where the outcome is plotted for optimal (τSt ). In this case, we observe a significant deviation
from price stability. Price inflation decreases on impact, and wage inflation increases a little bit
such that the real wage increases.

Understanding the difference in the allocation of HA and RA economies when τE is
constant

Economy 2 with optimal time-varying (τSt , τLt ) and a constant τE is the simplest deviation
from the complete-fiscal system for which the allocation is differs between the HA and the RA
economies. It is thus worth understanding deeper the economic mechanisms that are responsible
for these differences. As we will see, some of these mechanisms are also relevant in the other
fiscal systems.

Figure 2 plots the shock, aggregate consumption, the real wage, price and wage inflation
(with a difference scale compared to Figure 1), together with the full set of fiscal tools: employer
social contribution τSt , employee Social Contribution τLt , labor tax τL, income tax (τE) and
public debt. By assumption τE is constant. First, considering the RA economy, one can observe
that the first best is achieved with both price and wage stability. The path of public debt is
well-defined, and public debt increases a little bit in the RA economy. Nominal wages Ŵt are
constant, and the planner implements tax smoothing: taxes do not change, which is a standard
outcome in the RA economy (Barro, 1979). On impact that government increases capital tax
to decrease public debt (i.e. to hold more asset) and to finance public spending out of interest
payment paid by the representative agent.

This allocation cannot be reproduced in the HA economy, because public debt is positive at
the steady-state as a tool to smooth consumption. In the HA economy, nominal wage inflation is
also almost 0, but we observe opposite movements in the path of employed social-contribution
and employee social contribution. The employer social-contribution decreases a little bit on
impact, whereas the employee social contribution increases sharply to finance public spending.
Consumption and the real wage both fall on impact. Labor supply increases, as can be seen in
Figure 1, because the average marginal utility of consumption increases after the shock. Public
debt decreases after such a shock, because the average income of agents decreases as wage
decreases. As a consequence, the saving of the economy, and thus public debt decreases.
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Figure 2: Dynamics of the economy for positive public spending shock for Economy 2 with
optimal time-varying

{
τSt , τ

L
t

}
. The Heterogeneous-Agent economy (HA) is in blue and the

Representative-Agent economy (RA) is in red. All variables are in percentage proportional
change, except tax rates which are in percentage level change.

Understanding the difference in the allocation of HA and RA economies in other
fiscal systems

The analysis of the Economy 2 with constant τEt shows that optimal time-varying employer
Social Contribution barely moves in the HA case. As a consequence, when we impose that this
instrument is constant in Economy 3 (where only τLt and Bt are time-varying), the allocation is
not very different in the HA economy, as can be seen in Figure 1, comparing Panels 2 and 3.
In addition, taxes were already constant for the RA economy in Economy 2. As a consequence,
imposing that these taxes remain constant in Economies 3 and 4 is not a constraint and the
allocation is the same. As a consequence, we do not observe deviation from price stability in
Economy 3 and 4.

When only employer Social contributions are time-varying (Panel 4 in Figure 1), the allocation
is different and we observe deviation from price stability in the HA economy (but not in the
RA economy). To save some space, we represent the path of instruments in Appendix D.1, and
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summarize here the outcome. Price inflation is now used to decrease the real wage, as price
inflation is less sticky than wage one. Employer social contribution has to increase to finance
public spending.

Summary

From this analysis of demand shocks, we observe that HA and RA economies differ as soon as
public debt becomes an independent instrument in the RA economy, because the use of public
debt as liquidity create other mechanisms in the HA economies. We obtain deviation from price
stability, when time-varying labor tax is not available.

5.4 Optimal inflation and fiscal policy: the case of supply shocks

We now present the analysis for negative supply shocks. As in the previous section, we first
present a summary of the allocation in the same four economies as in Figure 1, and then focus on
one economy to exhibit the key mechanisms at stake. Figure 3 presents model outcomes for the
same negative supply shocks, which is temporary decreasing the marginal productivity of labor.

Economy 1: Optimal τE , τS , τL Economy 2: Optimal τS , τL

Economy 3: Optimal τL Economy 4: Optimal τS

Figure 3: Summary results for a negative supply shock, for the 4 economies, comparing the
Heterogeneous-Agent economy (HA) and the Representative-Agent economy (RA).

Economy 1 (as before) first plots the economy when all instruments (τEt , τSt , τLt ) are optimally
time-varying. Economy 1 again confirms that price inflation and wage inflation are optimally 0
in this environment, and that there is no quantitative difference between the RA and the HA
economy in this case.

Economy 2 reports the outcomes when τE is constant. In this case, there is no significant
quantitative differences with Economy 1. HA and RA economies are similar and there little
deviations from price stability. The intuitive reason for this new result is that the main issue in
the RA and HA economy is to bring the real wage closer to the marginal product of labor closer,
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in an economy with both sticky price and sticky wages.
Economy 3 plots the economy with constant τS , τE and optimal τLt . We find small differences

between HA and RA economies, but significant deviation from price stability in this case. Optimal
price inflation increases and wage inflation slightly decreases on impact, such that the real wages
decrease to get closer to the marginal productivity of labor.

Economy 4 plots the economy with constant τL,τE and optimal τS . Again, we find that
small differences between HA and RA economies, but the deviation from price and wage stability
is reduced in this economy. Price inflation increases and wage inflation decreases as in Economy
3, but the increase in price inflation in 3 times smaller in this economy.

Understanding the difference in the allocation between HA and RA economies when
τE is constant

We now present the dynamics of instruments for supply shocks for the Economy 2. Figure 4
presents the model outcomes for the same 9 variables as in Figure 2.

The shock in the first panel presents the evolution of the labor productivity Zt. The RA
economy implements the optimal allocation. In this case, the real wage follows labor productivity.
To obtain this allocation with zero inflation, and thus a constant bargained prices Ŵt,the planner
increases labor tax such that the post tax real wage rate is decreasing and it decreases social
contribution such that the pre-tax real wage rate paid by the firm W̃t = Ŵt/(1 − τSt ) decreases as
well. The intertemporal budget of the government requires a fall in public debt (so an increase
in the asset held by the government issued by the representative agent). For the HA economy,
the dynamics of the instruments is now roughly similar, because tax rates are now moving in the
same directions in both RA and HA economies. This overall result in an aggregate consumption
path which is roughly similar in the HA and the RA economies.

Understanding the difference in the allocation of HA and RA economies in other
fiscal systems

For supply shock, the main objective of the planner is to close the gap between the real wage and
the marginal productivity of labor in an economy with sticky prices and wages. When optimal
Employer SC (τSt ) are not available (Economy 3), the planner uses price inflation to decrease the
labor cost paid by the firm. The post tax real wage is decreasing due to an additional increase in
the labor tax (see Figure 11 in Appendix E.2). When labor tax (τSt ) is not available (Economy
4), the planner uses a decrease in employer SC to decrease the real wage. As a consequence, the
need of an increase in price inflation to further decrease the real wage is reduced.
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Figure 4: Dynamics of the economy for negative supply shock for Economy 2 with optimal
time-varying

{
τSt , τ

L
t

}
. The Heterogeneous-Agent economy (HA) is in blue and the Representative-

Agent economy (RA) is in red. All variables are in percentage proportional change, except tax
rates which are in percentage level change.

Summary

The difference between allocations of HA and RA economies is smaller for supply shock compared
to demand shocks. We obtain the biggest deviation from price stability, when only time-varying
labor tax are available. In this case, inflation is a tool to reduce the real wage, in the HA economy,
as in the RA economy.

5.5 Dynamics with fiscal and monetary rules

The previous optimal allocations can be compared to the one obtained with simple policy rules.
We simulate the model with fiscal and monetary rules to assess the gain of implementing optimal
policies in this environment. To save some space we only focus on negative supply shocks.

Concerning monetary policy, we introduce a standard Taylor rule, which depends on price
inflation:

it = i∗ + ϕππ
P
t , (38)

31



where it is the nominal interest rate between period t and period t+ 1. The constant i∗ = 1% is
the steady-state nominal rate, which is equal to the real interest rate, as steady-state inflation is
0. The parameter ϕπ is the coefficient of the Taylor rule. As noted by Erceg et al. (2000) and
Galí (2015), price determinacy generally requires the sum of the Taylor rule coefficients on both
price and wage inflation to be larger than 1. In our case, ϕπ > 1 ensures price stability. We
consider two values for this parameter: ϕπ = 1.1 and ϕπ = 1.5 to show the sensitivity of the
dynamics to this coefficient.

Considering fiscal rules, we assume that tax rates are constant and set to their steady-state
values. We only introduce an adjustment in the transfers related to the debt level à la Bohn
(1998) to ensure debt sustainability. The fiscal rules thus involve τKt = τSt = τEt = 0 and:

τLt = τL∗ + ρB(Bt −B∗), (39)

where we set ρB = 0.08, and then ρB = 0.8 to investigate the sensitivity of the economy dynamics
to the fiscal rule. The value B∗is the steady-state level of public debt in either the RA or HA
economy, while τL∗ = 16% is the steady-state value of this labor tax.

Figure 5 plots the Impulse Response Functions (IRFs) for the main variables in an economy
with the previous rules, after a 1% negative TFP shock. Labor tax τL and wage and price
inflation are reported in level deviations, while all other variables are reported in percent deviation
from their steady-state values.

The shock is a negative supply shock, akin a energy price shock. Two results are worth
mentioning.

1. HA and RA models generate qualitatively similar results, but the HA model exhibits a
stronger fall in consumption. Indeed, as the MPC is higher in the HA model than in the
RA model, the fall in consumption and output is higher in HA model, due to both direct
and indirect effect (Kaplan et al., 2018).

2. Both HA and RA models generate a price-wage spiral that corresponds to an increase
in both price and wage inflation, associated to a decrease in the real wage. This “spiral”
is of a larger magnitude in the HA model than in the RA one. Indeed, both price and
wage inflation responses are of larger magnitude: twice larger for the wage inflation and
50% larger for price inflation. Since wage inflation is much larger, this also translates to a
smaller drop in the real wage in the HA economy than in the RA one. The reason is quite
subtle and relates to the heterogeneity of the drop in consumption. Although the average
consumption drop is higher in HA than in RA economy, the HA consumption drop is more
severe (both in absolute and relative terms) for high-wealth agents than for low-wealth
(credit-constrained) agents. In our simulation, credit-constrained agents suffer from a 0.1%
consumption drop (which is roughly the real wage drop), whereas wealthy agents experience
of 0.8% consumption drop. For the sake of comparison, note that the consumption drop in
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Figure 5: Impulse response functions of main variables after a negative TFP shock, for the model
with a Taylor rule and simple fiscal rule. The labor tax and price and wage inflation are reported
in level deviation (in percent), while all other ones are in proportional percentage deviations
from steady state values. HA is the heterogeneous agent economy, RA is the representative agent
economy.

the RA economy amounts to 0.6%. This stronger drop in consumption for wealthy (and
hence high-consumption) agents than for poor (and hence low-consumption) agents is due
to the drop in real interest rate that adds to the drop in real wage. As a consequence, the
average marginal utility increases less in the HA economy than in the RA economy. Hence,
the labor gap increases more in the HA economy and so does wage inflation.

We now investigate the sensitivity of these results, changing both the monetary and fiscal rules,
plotting the same variables. In addition to the baseline environments (ϕπ = 1.1 and ρB = 0.08)
in black solid line, we consider alternative economies. In the second economy (blue dashed line),
the Taylor rule is more sensitive to inflation (ϕπ = 1.5 and ρB = 0.08). In the third economy
(red dotted line), the fiscal rule is more sensitive to public debt (ϕπ = 1.1 and ρB = 0.8).

We first observe that the monetary policy rule affects both the the allocation and the inflation
dynamics. A more aggressive monetary policy (higher ϕπ) generates a larger drop in consumption
and a much smaller inflation reaction. The change in the fiscal rule translates to a more volatile
response of the labor tax and a smoother public debt variation. The real wage drops much more
but inflation and output reactions are barely affected.17

17The small effect of fiscal policy on output is due to the fact than we use the linear labor tax as a fiscal
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Figure 6: Impulse response functions of main variables after a negative TFP shock, for the model
with a Taylor rule and simple fiscal rule. The labor tax and price and wage inflation are reported
in level deviation (in percent), while all other ones are in proportional percentage deviations
from steady state values. the HA economy for different monetary and fiscal rules.

6 Conclusion

We derive joint optimal monetary-and-fiscal policy in an HA model with both sticky prices and
sticky wages, for both supply and demand shocks. Our first main finding is that a sufficiently rich
fiscal policy can efficiently stabilize both inflation and activity. The key instrument for supply
shocks appears to be a time-varying wage subsidy for supply shocks, and time-varying labor tax
for demand shocks. Their primary goal is to reduce the gap between marginal labor productivity
and the sticky labor cost, even though indirect effects on aggregate demand and inflation are also
present. It is noteworthy that these tools have been recently been used in Europe to stabilize
employment. In Germany, the so-called kurzarbeit device played this role, while in France, the
activité partielle policy was a wage subsidy to reduce layoffs during the Covid-19 crisis. We
have named these time-varying fiscal policy non-Keynesian stabilizers are their goal is not to
simply manage aggregate demand and economic activity due to fiscal multipliers. The fiscal
tools directly affect distortions on the labor market, generating as indirect effect, some changes
in aggregate demand.

Our second main finding is that HA and RA economies significantly differ, when the set set of

instrument to be consistent with the analysis. A fiscal rule based on a lump-sum transfer would generate a higher
variation in output due to the higher MPC in the HA economy.
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fiscal instruments imply that movements in public debt are important to implement the desired
allocation (in other words when we deviate from Ricardian equivalence for both the RA and the
HA economies).
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Appendix

A Interpretation the TFP shock as an energy price shock

We explain how the TFP shock can be interpreted as an energy price shock. We do so in a
general case featuring capital. We consider a CRS production function F̃ using capital, labor,
and energy. Energy is denoted E and its price is denoted by q̃. We thus have:

F̃ (K,L,E) = Z̃KαKLαLE1−αK−αL ,

where αK and αL are capital and labor shares respectively. We can easily generalize the
construction of Section 2.4. The markup of equation (1) is denoted with a tilde and becomes:
m̃t = 1

Z̃t

(
r̃K

t +δ
αK

)αK
(
w̃t
αL

)αL
(

q̃t

1−αK−αL

)1−αK−αL , while factor prices are defined as follows:

r̃Kt + δ = m̃tαKZ̃tK
αK−1
t−1 LαL

t E1−αK−αL
t , (40)

w̃t = m̃tαLZ̃tK
αK−1
t−1 LαL−1E1−αK−αL

t , (41)

q̃t = m̃t(1 − αK − αL)Z̃tKαK
t−1L

αL
t E−αK−αL

t (42)

Using the expression (42) of q̃t, we obtain:

Et =
(
m̃t(1 − αK − αL)Z̃t

q̃t

) 1
αK +αL

K
αK

αK +αL
t L

αL
αK +αL
t . (43)

We introduce the following notation:

Zt = Z̃
1

αK +αL
t

(
q̃t

1 − αK − αL

)1− 1
αK +αL

, (44)

α = αK
αK + αL

, (45)

mt = (αK + αL)m̃
1

αK +αL
t . (46)

Substituting for the expression (43) of Et into factor prices (40), we obtain:

r̃Kt + δ = mtαZtK
α−1
t L1−α

t , (47)

where the second equality comes from rearrangement and the last from the definitions (44)–(46).
Similarly for (41):

w̃t = mt(1 − α)ZtKα
t−1L

−α
t . (48)
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We have been able to rewrite factor prices r̃t and w̃t consistently with factor price definition. We
now have to find a consistent definition of the production function. Adapting (3), we have:

F̃ (Kt−1, Lt, Et) = (r̃Kt + δ)Kt−1 + w̃tLt + q̃tEt
m̃t

,

or after substituting the expressions of F̃ and Et and

(r̃Kt + δ)Kt−1 + w̃tLt
m̃t

= Zt(αK + αL)m̃
1

αK +αL
−1

t Kα
t−1L

1−α
t ,

where we have used the definitions (44) of Ztand (45) of α. Using the definition (46) of m̃t, we
finally obtain:

ZtK
α
t−1L

1−α
t = (r̃Kt + δ)Kt−1 + w̃tLt

mt
,

which is thus similar to (3). The function F (K,L) = ZKαL1−α with Z and α defined in (44)
and (45) is thus consistent with the new definitions of factor prices (47) and (48), the markup
(46), as well as with the equation (3) connection output, factor prices and markups.

Interestingly, the TFP expression is Zt = Z̃
1

αK +αL
t

(
q̃t

1−αK−αL

)1− 1
αK +αL with 0 < αK+αL < 1:

an increase in energy prices (a higher q̃t) can thus be interpreted as a drop in TFP Zt. We will
use this analogy in our quantitative exercise of Section 5.

Alternatively to a Cobb Douglas production function, one could consider a production function
with Constant Elasticity of Substitution (CES) of the following form:

F (Kt−1, Lt, Et) = Zt
[
(1 − ϵ)

1
η

(
Kα
t−1L

1−α
t

) η−1
η + ϵ

1
η
(
Et
) η−1

η

] η
η−1

where ϵ is the energy share and η and the elasticity of substitution between energy inputs and
value-added Vt = Kα

t−1L
1−α
t . When the elasticity of substitution is close to zero, small fluctuation

in quantity of energy supplied can cause large spike in energy prices and marginal costs for firms.
This ordering of the nests between energy, labor and capital is suggested by empirical evidence
that the energy share in the economy follows closely the fluctuation in energy prices. Such CES
expression is well suited for matching such patterns, as suggested in Hassler et al. (2021).

B Proof of proposition 1

We solve for the Ramsey allocation in the RA case, for both demand and supply shocks.

B.1 First-best allocation

In the first-best allocation, the resource constraint imposes that total consumption is financed
out of production: Gt + Ct = ZtLt. The labor supply is thus determined by the solution to the
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following program: maxLt u(ZtLt −Gt) − v(Lt). The first-order condition defines the first-best
labor supply LFBt as the solution of:

Ztu
′(ZtLFBt −Gt) = v′(LFBt ), (49)

which can be shown to admit a unique solution under standard assumption (u increasing concave
with u′(0) = ∞ and u′(∞) = 0 and v increasing convex).

Consider the following particular case. We set Gt = 0, u′(c) = c−γ , and v′(L) = χ−1L1/ϕ

such that γ > 0 is the inverse of the IES and ϕ > 0 is the Frisch elasticity of labor supply. We

obtain: LFBt = χ

1
1
ϕ

+γ
Z

1−γ
1
ϕ

+γ

t .

B.2 Representative-agent model with a full set of instruments

We show that when the planner has access to the full set of instrument, the first-best allocation
can be implemented for both demand and supply shocks. This requires πW = πP = 0, to avoid
price or wage adjustment costs. The equations defining the equilibrium allocation are

wt =
(
1 − τEt

)
(1 − τLt )

(
1 − τSt

)
Zt,

v′(Lt) − εW − 1
εW

wt
1 − τEt

u′ (Ct) = 0 (50)

1
Zt

wt
(1 − τLt )(1 − τSt )

(
1 − τEt

) = 1 (51)

1 = wt
wt−1

(1 − τLt−1)
(1 − τLt )

(52)

Ct = ZtLt −Gt

Gt + (1 + rt)Bt−1 + (wt − Zt)Lt = Bt (53)

u′ (Ct) = β (1 + rt+1)u′ (Ct+1) (54)

Note that the Euler equation (54) determines the real interest rFBt t ≥ 1 from the first-best
path of consumption CFBt . Importantly, this equations don’t determine the period-0 interest rate
r0.

Equation (53à is the budget constraint of the government.
Equation (52) implies that there is a α such that 1 − τLt := αwt. For the allocation to be the

first best, equations (50) and (49) implies that

1 − τEt := εW − 1
εW

wt
Zt
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Then equation (51) implies
1 − τSt := εW

εW − 1
1
αwt

Then the budget of the government implies

wt = Zt − Gt + (1 + rt)Bt−1 −Bt
Lt

(55)

Implementation results: For any path of Gt, Zt and path of public debt Bt, for t ≥ 0, the
first best can be implemented.

The proof is direct. Consider a path Gt, Zt, Bt and the first-best labor supply LFBt . It gives
a path of consumption determining the real interest rate rt, t ≥ 1. For any r0 (which is an
additional free variable), the equation (55) determines a path for the real wage rate. Then for
any α, 1 − τLt = αwt, 1 − τEt = εW −1

εW

wt
Zt

, 1 − τSt = εW
εW −1

1
αwt

is a market equilibrium.
Note thus that public debt is not determined in this implementation.
Note that in a steady-state equilibrium (where Z = 1 and B,G,w are constant) , we have

BSS = β

1 − β

(
(1 − w)LFBSS −GSS

)

B.3 RA model : Representative agents without time-varying τEt

We assume that the economy is in steady state, where public debt is BSS . and hit by the shock
at period 0. In the previous analysis, we can impose τEt = τESS .

wt = εW
εW − 1

(
1 − τEss

)
Zt

Then, 1 − τLt = α εW
εW −1

(
1 − τEss

)
Zt, , 1 − τSt = 1

α(1−τE
ss)Zt

.
The budget of the state implies (for t ≥ 0, with the notation B−1 = BSS)

(1 + rt)Bt−1 −Bt = Θt

with
Θt :=

(
1 − εW

εW − 1
(
1 − τEss

))
ZtL

FB
t −Gt

The variable Θt is uniquely determined. This uniquely determines the path of public
converging back to the steady state. To see that, first observe that the period-0 interest rate 0 r0

is a free parameter determined by period-0 capital tax τ̂K0 .

B−1 (1 + r0) =
∑
t=0

Gt
R0,t

+ lim
T→∞

BT
Rt,T

To have limT→∞
BT
Rt,T

= 0, we must choose the initial capital tax such that
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(1 + r0)B−1 =
∞∑
k=t

Θk∏k
j=t+1

(
1 + rFBj

) + lim
T→∞

BT∏T
j=t+1

(
1 + rFBj

)
(with the notation

∏t
j=t+1 = 1). The term limT→∞

BT∏T

j=t+1(1+rj)
= 0 if the economy converges

back to the steady state. The unique period 0 allowing the public debt to converge back to the
steady state is

1 + r0 =

∑∞
k=t

Θk∏k

j=t+1(1+rF B
j )

BSS
,

which is uniquely determined.

B.4 RA with Demand shock

We now show that whatever the fiscal system (economy 3 and 4), the first-best allocation can be
implemented with demand shocks. The proof follows the consideration of the previous Section.

We now assume that τE = τESS and τE = τESS . We now focus on the case where 1−τEss = εW −1
εW

,
to determine uniquely the path of the instruments. Any other value would not quantitatively
change the allocation, and qualitatively the path of the instruments.

In this case, we have w = Z = 1. Then 1 − τLt = α, and 1 − τS = εW
εW −1

1
α

and
1 + r0 = 1 − β

β

∞∑
k=t

Gk/GSS∏k
j=t+1

(
1 + rFBj

) ,
implements the first-best allocation.

B.5 The RA economy without time-varying τEt and τSt , with optimal τLt and
supply shocks

The first-best cannot be implemented, and we must solve for the Ramsey allocation. We provide
equations for both demand and supply shocks and then discuss each case in turn.

The program is:
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max
(τL

t ,τ
S
t ,τ

K
t ,Bt,Tt,πP

t ,π
W
t ,wt,rt,Ωt,R̃N

t ,Lt,ct,at)t≥0

E0

[ ∞∑
t=0

βt (u(ct) − v(Lt)) − ψW
2 (πWt )2

]
,

Gt + (1 + rt)Bt−1 + wtLt ≤
(
1 − ψP

2 (πPt )2
)
ZtLt +Bt,

ct + at = (1 + rt)Bt−1 + wtLt,

u′(ct) = βEt
[
(1 + rt+1)u′(ct+1)

]
,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW

wt
1 − τEss

u′(ct)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τLt ) (1 − τEss)

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt ) wt−1
1 − τLt−1

= wt
1 − τLt

(1 + πPt ),

Define

Tt = (1 + rt)Bt−1 −Bt

xt = wt
1 − τLt

Then the program is (using εW −1
εW

= 1 − τEss)

max
(xtTt,πP

t ,π
W
t ,wt,Lt,ct)t≥0

E0

[ ∞∑
t=0

βt (u(ct) − v(Lt)) − ψW
2 (πWt )2

]
,

Gt + Tt +
(
1 − τLt

)
xtLt ≤

(
1 − ψP

2 (πPt )2
)
ZtLt,

ct = Tt +
(
1 − τLt

)
xtLt,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) −

(
1 − τLt

)
xtu

′(ct)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( εW
εW − 1

1
Zt
xt − 1) + βEt

(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt )xt−1 = xt(1 + πPt ),
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while the corresponding Lagrangian becomes ct = Tt +
(
1 − τLt

)
xtLt

L = E0

∞∑
t=0

βt(u(ct) − v(Lt) − ψW
2 (πWt )2)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t
(
v′(Lt) −

(
1 − τLt

)
xtu

′(ct)
)
Lt

− E0

∞∑
t=0

βt(γP,t − γP,t−1)πPt (1 + πPt )ZtLt + εP − 1
ψP

E0

∞∑
t=0

βtγP,t

(
εW

εW − 1xt − Zt

)
Lt

+ E0

∞∑
t=0

βtµt

(
(1 − ψP

2 (πPt )2)ZtLt −Gt − Tt −
(
1 − τLt

)
xtLt

)

+ E0

∞∑
t=0

βtΛt
(
(1 + πWt )xt−1 − xt(1 + πPt )

)
We now turn to the computation of the FOCs.
Consider

ψt := dL
dc

= u′(ct) − εW
ψW

γW,t
(
1 − τLt

)
xtLtu

′′(ct)︸ ︷︷ ︸
effect on wage inflation

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λtxt−1 = 0.

FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1) − µtψPπ

P
t − Λt

ZtLt
xt = 0.

FOC wrt xt.

0 =
(
1 − τLt

)
Ltψt − εW

ψW
γW,t

(
1 − τLt

)
u′(ct)Lt + εP − 1

ψP
γP,t

εW
εW − 1Lt − µt

(
1 − τLt

)
Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1).

FOC wrt Lt.

0 =
(
1 − τLt

)
xtψt − v′(Lt) + µt

((
1 − ψP

2 (πPt )2
)
Zt −

(
1 − τLt

)
xt

)
+ εW
ψW

γW,t
(
v′′(Lt)Lt + v′(Lt) −

(
1 − τLt

)
xtu

′(ct)
)

− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1
ψP

γP,t

(
εW

εW − 1xt − Zt

)
.
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FOC wrt Tt.

µt = u′(ct).

FOC wrt 1 − τLt .

0 = Ltxtψt − εW
ψW

γW,txtu
′(ct)Lt − µtxtLt.

Simplifying

FOC wrt Tt.

µt = u′(ct).

FOC wrt 1 − τLt .

0 = ψt − εW
ψW

γW,tu
′(ct) − µt.

0 = εW
ψW

γW,tu
′(ct)

(
1 − − (ct − Tt)u′′(ct)

u′(ct)

)
In this case, one can check that one has γW,t = 0 (The wage Phillips curve is not a constraint)

FOC wrt πWt .
−ψWπWt + Λtxt−1 = 0.

FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1) − µtψPπ

P
t − Λt

ZtLt
xt = 0.

FOC wrt xt.

0 = εP − 1
ψP

γP,t
εW

εW − 1Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1).

Using the FOC wrt to τL, we have:

FOC wrt Lt.

0 = −v′(Lt) + µt
(
1 − ψP

2 (πPt )2
)
Zt

− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1
ψP

γP,t

(
εW

εW − 1xt − Zt

)
.

Simplifying

ψWπ
W
t = Λtxt−1.
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and

FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1) = µtψPπ

P
t + Λt

ZtLt
xt.

FOC wrt xt.

0 = εP − 1
ψP

γP,t
εW

εW − 1Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1).

FOC wrt Lt.

v′(Lt) = µt
(
1 − ψP

2 (πPt )2
)
Zt

− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1
ψP

γP,t

(
εW

εW − 1xt − Zt

)
.

Determining the path of public debt from the path of Tt

The dynamics of public debt is

Bt = (1 + rt)Bt−1 + Tt

At the moment of the shock, at period 0, the planner can change capital tax.

1 + r0 =
−
∑∞
k=t

Tk∏k

j=t+1(1+rF B
j )

BSS
,

B.6 RA analysis without (time-varying) τEt , τLt , with time-varying τSt

With the same change of variable as in the previous case,

max
(τL

t ,τ
S
t ,τ

E
t ,τ

K
t ,πP

t ,π
W
t ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt (u(ct) − v(Lt)) ℓ(di) − ψW
2 (πWt )2

]
,

Gt + T + wtLt ≤
(
1 − ψP

2 (πPt )2
)
ZtLt,

ct = Tt + wtLt,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − wtu

′(ct)ℓ(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τLss)(1 − τSt )(1 − τEss)

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt )wt−1 = wt(1 + πPt ).
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Define
zt = 1

(1 − τLss)(1 − τSt )(1 − τEss)
= 1 − τSss

1 − τSt

L = E0

∞∑
t=0

βt(u(ct) − v(Lt) − ψW
2 (πWt )2)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t
(
v′(Lt) − wtu

′(ct)
)
Lt

− E0

∞∑
t=0

βt(γP,t − γP,t−1)πPt (1 + πPt )ZtLt + εP − 1
ψP

E0

∞∑
t=0

βtγP,t (wzt − Zt)Lt

+ E0

∞∑
t=0

βtµt

(
(1 − ψP

2 (πPt )2)ZtLt −Gt − Tt − wtLt

)

+ E0

∞∑
t=0

βtΛt
(
(1 + πWt )wt−1 − wt(1 + πPt )

)

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λtwt−1 = 0.

FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1) − µtψPπ

P
t − Λt

ZtLt
wt = 0.

FOC wrt wt.

0 = Ltψt − εW
ψW

γW,tu
′(ct)Lt + εP − 1

ψP
γP,tLt − µtLt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1).

FOC wrt Lt.

0 = wtψt − v′(Lt) + µt

((
1 − ψP

2 (πPt )2
)
Zt − wt

)
+ εW
ψW

γW,t
(
v′′(Lt)Lt + v′(Lt) − wtu

′(ct)
)

− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1
ψP

γP,t (wzt − Zt) .

FOC wrt Tt.

µt = u′(ct).

FOC wrt zt.

0 = γP,t.
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Simplifying

FOC wrt πWt .
ψWπ

W
t = −(γW,t − γW,t−1)(2πWt + 1) + Λtwt−1.

FOC wrt πPt .
−µtψPπPt = Λt

ZtLt
wt−1.

FOC wrt wt.

0 = − εW
ψW

γW,tu
′(ct)Lt − Λt(1 + πPt ) + βΛt+1(1 + πWt+1).

FOC wrt Lt.

v′(Lt) = +µt
(
1 − ψP

2 (πPt )2
)
Zt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt) − wtu

′(ct)
)

µt = u′(ct).

C Ramsey program for HA models

C.1 Flexible-price equilibrium

We here assume here that the planner must choose a common labor supply for all agents, in a
flexible price economy: πPt = πWt = 0. The program is:

max
(τL

t ,τ
S
t ,τ

K
t ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit) − v(Lt)

)
ℓ(di)

]
,

Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt + Tt ≤ ZtLt +

ˆ
i
ai,tℓ(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t.
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The Lagrangian can be written as:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t) − v(Lt))ℓ(di) − E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)ℓ(di)

+ E0

∞∑
t=0

βtµt

(
ZtLt +

ˆ
i
ai,tℓ(di) −Gt − (1 + rt)

ˆ
i
ai,t−1ℓ(di) − wtLt − Tt

)
.

We recall that ψi,t = ωitu
′(ci,t) − (λi,c,t − (1 + rt)λi,c,t−1)u′′(ci,t). Compared to (32), we drop the

FP subscript for the sake of simplicity. We compute the FOCs wrt four independent instruments:
rt, wt, Lt and (ai,t)i. The other instruments can be recovered from the constraints.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,tℓ(di) +

ˆ
i
λi,c,t−1u

′(ci,t)ℓ(di) = 0. (56)

FOC wrt wt. ˆ
i
yi,tψ̂i,tℓ(di) = 0.

FOC wrt Lt. Using the FOC on wt:
ˆ
i
ωi,tℓ(di)v′(Lt) = µtZt = Zt

ˆ
i
yi,tψi,tℓ(di).

FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.
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C.2 The HA economy with all instruments

The program is:

max
(τL

t ,τ
S
t ,τ

E
t ,τ

K
t ,πP

t ,π
W
t ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit) − v(Lt)

)
ℓ(di) − ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt ≤

(
1 − ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,tℓ(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW

wt
1 − τEt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τLt )(1 − τSt )(1 − τEt )

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt ) wt−1
1 − τLt−1

= wt
1 − τLt

(1 + πPt ).

We can set:

– τSt such that 1 − τSt = 1
Zt

wt

(1−τL
t )(1−τE

t ) , hence 1
Zt

wt

(1−τL
t )(1−τS

t )(1−τE
t ) − 1 and πPt = 0.

– τEt is a free parameter that can be deduced from πWt and the allocation. Hence, the wage
Phillips curve is not a constraint.

– πWt only reduces utility and is an independent parameter that can be set through τL, hence
πWt = 0

The program then reduces to the same one as in the flexible-price economy without union:

Recovering taxes from the allocation We then have

1 − τEt = εW − 1
εW

wt

´
i yi,tu

′(ci,t)ℓ(di)
v′(Lt)

1 − τLt = αwt

1 − τSt = 1
Zt

wt
(1 − τLt )(1 − τEt )

C.3 The HA economy without τEt

We impose τEt = 0. The program is otherwise the same as in Section C.2. In particular, τSt
only appears in the price Phillips curve. As consequence, this equation is not a constraint and
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τSt is set, such that πPt = 0. Inflation indeed only destroys resources here. We then obtain the
following program:

max
(τL

t ,Bt,Tt,πP
t ,π

W
t ,wt,rt,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit) − v(Lt)

)
ℓ(di) − ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt + Tt ≤ ZtLt +

ˆ
i
ai,tℓ(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + yi,twtLt + Tt,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

Because of τEt = 0, we cannot have simultaneously optimal labor supply and πWt = 0: the planner
has to balance the relative costs of wage inflation with the suboptimal provision of labor supply.
The Lagrangian is:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t) − v(Lt))ℓ(di) − ψW

2 (πWt )2

− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)ℓ(di)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt

+ E0

∞∑
t=0

βtµt

(
ZtLt +

ˆ
i
ai,tℓ(di) −Gt − (1 + rt)

ˆ
i
ai,t−1ℓ(di) − wtLt − Tt

)
.

We recall that in this economy, we have ψi,t = ωitu
′(ci,t) − (λi,c,t − (1 + rt)λi,c,t−1)u′′(ci,t) −

εW −1
ψW

γW,twtyi,tu
′′(ci,t)Lt, where compared to (37), we also drop the superscript.

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) = 0.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,tℓ(di) +

ˆ
i
λi,c,t−1u

′(ci,t)ℓ(di) = 0.

FOC wrt wt. ˆ
i
yi,tψ̂i,tℓ(di) = γW,t

εW − 1
ψW

ˆ
i
yi,tu

′(ci,t)ℓ(di).
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FOC wrt Lt. Using the FOC wrt wt:

−
ˆ
i
ωi,tℓ(di)v′(Lt) + µtZt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
= 0.

FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.

C.4 The HA economy without τEt and τSt with τLt

In this case, there is no obvious simplification and the program is:

max
(τL

t ,τ
S
t ,τ

K
t ,Bt,Tt,πP

t ,π
W
t ,wt,rt,Ωt,R̃N

t ,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit) − v(Lt)

)
ℓ(di) − ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt + Tt ≤

(
1 − ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,tℓ(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τLt )

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt ) wt−1
1 − τLt−1

= wt
1 − τLt

(1 + πPt ),
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while the corresponding Lagrangian becomes:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t) − v(Lt))ℓ(di) − ψW

2 (πWt )2

− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)ℓ(di)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt

− E0

∞∑
t=0

βt(γP,t − γP,t−1)πPt (1 + πPt )ZtLt + εP − 1
ψP

E0

∞∑
t=0

βtγP,t

(
wt

(1 − τLt )
− Zt

)
Lt

+ E0

∞∑
t=0

βtµt

(
(1 − ψP

2 (πPt )2)ZtLt +
ˆ
i
ai,tℓ(di) −Gt − (1 + rt)

ˆ
i
ai,t−1ℓ(di) − wtLt

)

+ E0

∞∑
t=0

βtΛt

(
(1 + πWt ) wt−1

1 − τLt−1
− wt

1 − τLt
(1 + πPt )

)

We now turn to the computation of the FOCs.

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λt

wt−1
1 − τLt−1

= 0.

FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1) − µtψPπ

P
t − Λt

ZtLt

wt
1 − τLt

= 0.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,tℓ(di) +

ˆ
i
λi,c,t−1u

′(ci,t)ℓ(di) = 0.

FOC wrt wt. Using the FOC wrt to τL, we have:

0 =
ˆ
i
yi,tψ̂i,tℓ(di) − γW,t

εW − 1
ψW

ˆ
i
yi,tu

′(ci,t)ℓ(di).

FOC wrt Lt. Using the FOC wrt wt:

0 = −
ˆ
i
ωi,tℓ(di)v′(Lt) + µt

(
1 − ψP

2 (πPt )2
)
Zt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
− (γP,t − γP,t−1)πPt (1 + πPt )Zt + εP − 1

ψP
γP,t

(
wt

(1 − τLt )
− Zt

)
.

53



FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.

FOC wrt τLt . We derive wrt 1
1−τL

t
and obtain:

0 = εP − 1
ψP

γP,tLt − Λt(1 + πPt ) + βEt
[
Λt+1(1 + πWt+1)

]
.

C.5 The HA economy without time-varying τEt and τLt with τSt

I consider τEss =
(
εW −1
εW

)−1
and τLt = τLss

In this case, there is no obvious simplification and the program is:

max
(τS

t ,τ
K
t ,Bt,Tt,πP

t ,π
W
t ,wt,rt,Ωt,R̃N

t ,Lt,(ci,t,ai,t,νi,t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ω(yit)

(
u(cit) − v(Lt)

)
ℓ(di) − ψW

2 (πWt )2
]
,

Gt + (1 + rt)
ˆ
i
ai,t−1ℓ(di) + wtLt + Tt ≤

(
1 − ψP

2 (πPt )2
)
ZtLt +

ˆ
i
ai,tℓ(di),

for all i ∈ I: ci,t + ai,t = (1 + rt)ai,t−1 + wtyi,tLt,

ai,t ≥ −a, νi,t(ai,t + a) = 0, νi,t ≥ 0,

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t,

πWt (πWt + 1) = εW
ψW

(
v′(Lt) − wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + βEt

[
πWt+1(πWt+1 + 1)

]
,

πPt (1 + πPt ) = εP − 1
ψP

( 1
Zt

wt
(1 − τL)(1 − τSt ) (1 − τEss)

− 1) + βEt
(
πPt+1(1 + πPt+1)Zt+1Lt+1

ZtLt

)
,

(1 + πWt )wt−1 = wt(1 + πPt ),
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while the corresponding Lagrangian becomes:

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t) − v(Lt))ℓ(di) − ψW

2 (πWt )2

− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)ℓ(di)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t

(
v′(Lt) − wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt

− E0

∞∑
t=0

βt(γP,t − γP,t−1)πPt (1 + πPt )ZtLt + εP − 1
ψP

E0

∞∑
t=0

βtγP,t

(
wt

(1 − τLSS)(1 − τESS)(1 − τSt )
− Zt

)
Lt

+ E0

∞∑
t=0

βtµt

(
(1 − ψP

2 (πPt )2)ZtLt +
ˆ
i
ai,tℓ(di) −Gt − (1 + rt)

ˆ
i
ai,t−1ℓ(di) − wtLt

)

+ E0

∞∑
t=0

βtΛt
(
(1 + πWt )wt−1 − wt(1 + πPt )

)
We now turn to the computation of the FOCs.

FOC wrt τSt . We derive wrt 1
1−τS

t
and obtain:

0 = εP − 1
ψP

γP,t
wt

(1 − τLSS)(1 − τESS)
Lt

or
γP,t = 0.

FOC wrt πPt .
−(γP,t − γP,t−1)(2πPt + 1) − µtψPπ

P
t − Λt

ZtLt
wt = 0,

FOC wrt πWt .
−ψWπWt − (γW,t − γW,t−1)(2πWt + 1) + Λt

wt−1
1 − τLt−1

= 0.

FOC wrt rt. ˆ
i
ai,t−1ψ̂i,tℓ(di) +

ˆ
i
λi,c,t−1u

′(ci,t)ℓ(di) = 0.

FOC wrt wt.

0 =
ˆ
i
yi,tψ̂i,tℓ(di) − γW,t

εW
ψW

ˆ
i
yi,tu

′(ci,t)ℓ(di).
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FOC wrt Lt.

L = E0

∞∑
t=0

βt
ˆ
i
ωit(u(ci,t) − v(Lt))ℓ(di) − ψW

2 (πWt )2

− E0

∞∑
t=0

βt
ˆ
i
(λi,c,t − (1 + rt)λi,c,t−1)u′(ci,t)ℓ(di)

− E0

∞∑
t=0

βt(γW,t − γW,t−1)πWt (1 + πWt )

+ εW
ψW

E0

∞∑
t=0

βtγW,t

(
v′(Lt) − εW

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt

+ E0

∞∑
t=0

βtµt

(
ZtLt +

ˆ
i
ai,tℓ(di) −Gt − (1 + rt)

ˆ
i
ai,t−1ℓ(di) − wtLt

)

0 = −
ˆ
i
ωi,tℓ(di)v′(Lt) + µtZt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
+ wt

(ˆ
i
yi,tψ̂i,tℓ(di) − γW,t

εW
ψW

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)

Using the FOC wrt wt:

0 = −
ˆ
i
ωi,tℓ(di)v′(Lt) + µtZt + εW

ψW
γW,t

(
v′′(Lt)Lt + v′(Lt)

)
FOC wrt ai,t.

ψ̂i,t = βEt
[
(1 + rt+1)ψ̂i,t+1

]
.
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D Optimal policies for demand shocks

D.1 Economy 1, with all instruments

Figure 7: Dynamics of the economy for positive public spending shock for Economy 1 with
optimal time-varying

{
τEt , τ

S
t , τ

L
t

}
. The Heterogeneous-Agent economy (HA) is in blue and

the Representative-Agent economy (RA) is in red. All variables are in percentage proportional
change, except tax rates which are in percentage level change.
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D.2 Economy 3, with time-varying τLt

Figure 8: Dynamics of the economy for positive public spending shock for Economy 3 with optimal
time-varying

{
τLt

}
. The Heterogeneous-Agent economy (HA) is in blue and the Representative-

Agent economy (RA) is in red. All variables are in percentage proportional change, except tax
rates which are in percentage level change.
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Figure 9: Dynamics of the economy for positive public spending shock for Economy 4 with optimal
time-varying

{
τSt

}
. The Heterogeneous-Agent economy (HA) is in blue and the Representative-

Agent economy (RA) is in red. All variables are in percentage proportional change, except tax
rates which are in percentage level change.

D.3 Economy 4, with time-varying τSt

E Optimal policies for supply shocks

E.1 Economy 1, with all instruments

Figure 10: Dynamics of the economy for negative supply shock for Economy 1 with optimal time-
varying

{
τEt , τ

S
t , τ

L
t

}
. The Heterogeneous-Agent economy (HA) is in blue and the Representative-

Agent economy (RA) is in red. All variables are in percentage proportional change, except tax
rates which are in percentage level change.
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E.2 Economy 3, with time-varying τLt

Figure 11: Dynamics of the economy for negative supply shock for Economy 3 with optimal time-
varying

{
τLt

}
. The Heterogeneous-Agent economy (HA) is in blue and the Representative-Agent

economy (RA) is in red. All variables are in percentage proportional change, except tax rates
which are in percentage level change.
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E.3 Economy 4, with time-varying τSt

Figure 12: Dynamics of the economy for negative supply shock for Economy 4 with optimal time-
varying

{
τSt

}
. The Heterogeneous-Agent economy (HA) is in blue and the Representative-Agent

economy (RA) is in red. All variables are in percentage proportional change, except tax rates
which are in percentage level change.
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