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Abstract

We present a method to determine optimal monetary policy in heterogeneous-agent
economies with nominal frictions and aggregate shocks, under various assumptions regarding
fiscal policy. We analyze models with either sticky prices or sticky wages. In the sticky-price
economy, when fiscal policy is optimally set, optimal monetary policy implements price
stability. Inflation volatility remains low when fiscal policy follows empirically relevant rules.
The inflation response is more pronounced when the Phillips curve is steep and profits are
skewed toward highly productive agents. In the sticky-wage economy, optimal price inflation
becomes significantly more volatile, while wage inflation remains small. Under both types of
nominal rigidity, agents with lower productivity tend to benefit more from optimal monetary
policy.
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1 Introduction

Monetary policy generates redistributive effects through various channels, which have been
studied by a vast empirical and theoretical literature. However, it is not clear how these channels
should change the conduct of monetary policy. It might be possible that monetary policy should
take these effects into account in order to improve welfare, and thus serve a role that is usually
played by fiscal policy. Or, on the contrary, perhaps monetary policy should focus solely on
monetary goals, and let fiscal tools either dampen or strengthen its redistributive effects. To
distinguish between these two claims, one must consider optimal monetary policy in a realistic
fiscal environment, where heterogeneity among agents generates a concern for redistribution.

To do so, we follow the so-called Bewley (1980) literature and assume incomplete insurance
markets for idiosyncratic risks to be the main source of heterogeneity across agents. This
framework is known to be general enough to generate realistic distributions of income and wealth.
We further consider nominal frictions, leading to the class of Heterogeneous-Agent New-Keynesian
(HANK) models, named after the seminal paper of Kaplan et al. (2018). In this environment, we
solve for optimal monetary policy under a realistic fiscal system, focusing on optimal Ramsey
policy with commitment. Our analysis is made possible by methodological contributions that
enable this type of investigation within HANK models.

First, we elaborate on the Lagrangian approach of Marcet and Marimon (2019), which is
particularly well-suited to HANK economies. We introduce the concept of the net social value of
liquidity (SVL) for each agent, defined as the utility gain obtained from transferring one unit of
resources to a particular agent, accounting for all general equilibrium effects. Introducing the
SVL greatly simplifies the derivation of optimal policies in models with heterogeneous agents.
Second, to simulate the model, we employ a truncated representation of incomplete insurance
market economies, applying it to a monetary economy. This theory of truncation was first used in
LeGrand and Ragot (2022a) to study optimal unemployment benefits. We construct a consistent
and accurate approximation of the economy, in which heterogeneity depends solely on a finite
but arbitrarily large number of past consecutive realizations of idiosyncratic risk. Additionally,
we utilize a refinement of this uniform truncation method, developed in LeGrand and Ragot
(2022b), which allows for different truncation lengths and addresses the curse of dimensionality
associated with the uniform truncation. Both methods yield quantitatively similar results, and
we verify their accuracy by comparing outcomes in economies without optimal policy to those
obtained using the standard Reiter (2009) method, which is known to align closely with others
approaches, such as Boppart et al. (2018) and Auclert et al. (2021). We also consider social
welfare functions which enable us to derive the dynamics of the model around a steady state
that features an empirically relevant fiscal system. This analysis may be of independent interest.
Finally, and following the literature, we consistently examine optimal inflation volatility when
the economy is near its long-run equilibrium, an approach known as the timeless perspective
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(see Woodford, 1999, for instance). As noted by McCallum and Nelson (2000), this timeless
perspective is the closest approximation to “optimal policy making according to a rule”. This
approach is also immune to the difficulties that arise in the normative analysis of large inflation
surprises, referred to as period-0 policies in the literature cited below. Although this paper
focuses on optimal monetary policy, the tools developed in this paper can be used to derive
normative implications of heterogeneous-agent models in different environments.

We apply our methodology to environments featuring one of two forms of nominal frictions:
costly price adjustments or costly nominal wage adjustments. Our approach is well-suited to
both frameworks, despite differences in the expression of the SVL between the sticky-price
and the sticky-wage cases, as the SVL captures distinct general equilibrium effects. On the
one hand, sticky prices have become a standard nominal friction in the heterogeneous-agent
literature since Kaplan et al. (2018). On the other hand, the slow adjustment of nominal
wages is well-documented, and sticky wages may help address issues related to the cyclicality of
markups (Nekarda and Ramey, 2020). Indeed, as noted by Tobias et al. (2020) among others,
the redistribution of profits is a key force affecting the dynamics of HANK models. Thus, we
contrast the implications of the two types of nominal rigidities and show that optimal monetary
policies differ significantly between them.

In the sticky-price economy, we first consider the case in which both fiscal and monetary
policy are optimally designed. We then jointly solve for optimal monetary and fiscal policies
with commitment when five fiscal instruments are available: two linear taxes on real and nominal
capital income, a linear tax on labor income, lump-sum transfers, and a riskless one-period
public debt. We demonstrate that, in this framework, optimal monetary policy focuses solely on
implementing price stability, and optimal inflation plays no redistributive role over the business
cycle. This result can be understood using the distinction made by Kaplan et al. (2018) and
Auclert (2019) between the direct and indirect channels of monetary policy. Capital taxes
serve as sufficient instruments for the planner to replicate any allocation achievable through the
direct channels, as they affect the returns on capital. The labor tax is sufficient to replicate
any allocation reachable through the indirect effects, because it creates a wedge between labor
income and the marginal productivity of labor. Thus, linear taxes on capital and labor ensure
that monetary policy should focus solely on price stability, while fiscal policy alone handles
redistribution. This equivalence result generalizes the representative-agent finding of Correia
et al. (2008) to heterogeneous-agent economies.

We then relax the assumption of the optimally of fiscal policy and consider exogenous fiscal
rules. In our benchmark calibration, corresponding to to the empirically relevant case of constant
marginal tax rates, the planner does not implement perfect price stability, but optimal inflation
volatility remains low. However, and consistently with the literature, this quantitative response
of inflation is found to be sensitive to assumptions about profit distribution and the slope of the
Phillips curve. In particular, inflation volatility is high if the price Phillips curve is steep and the
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profit distribution is tilted toward richer agents.
In the sticky-wage economy, we model nominal rigidity following Erceg et al. (2000), an

approach frequently used in the heterogeneous-agent literature (Hagedorn et al., 2019, Alves and
Violante, 2024 and Auclert et al., 2024 among others). In this framework, agents are generally
not on their labor supply curve, introducing an additional labor market friction. We characterize
the optimal policy in the sticky-wage model using the same empirically relevant fiscal system of
constant marginal tax rates. We find that the optimal policy generates a small deviation from
nominal wage stability but causes significant movements in the price level, allowing the real
wage to adjust to economic shocks. The sticky-wage economy exhibits much higher volatility
in price inflation (and much lower volatility in wage inflation) than the sticky-price economy.
Consequently, the welfare gains from deviating from price stability are much higher in the
sticky-wage economy than in the sticky-price one. Deviating from nominal wage stability is also
welfare enhancing, albeit to a lesser extent. Under both types of nominal rigidity, we find that
departures from nominal stability disproportionately benefit lower-productivity agents, making
such policies progressive..

Related literature. Our paper belongs to a growing literature that departs from the representative-
agent model to analyse optimal monetary policy in heterogeneous-agent models. This earlier
literature studied sticky prices or sticky wages (see Woodford, 2003 or Galí, 2015 for textbook
treatments and references).

Our equivalence result in a HANK model with sticky prices is related to the five transmission
channels of monetary policy that have been identified in the heterogeneous-agent literature
(Kaplan et al. 2018, and Auclert, 2019, among others). Monetary policy has direct effects, which
operate through changes in real returns (Gornemann et al., 2016). The changes in returns
generate a substitution effect, already present in the representative-agent new-Keynesian model
(Woodford, 2003). Inflation also affects the real value of nominal assets, through a Fisher effect
(Doepke and Schneider, 2006). Changes in real returns generate a wealth effect due to unhedged
interest rate exposure, identified by Auclert (2019). In addition to these three direct channels,
there are also two indirect effects due to the endogeneity of labor income and to the heterogeneous
exposure to income variations (Coibion et al., 2017; Acharya and Dogra, 2021). If labor and
capital taxes are optimally designed, then the use of these channels by monetary policy does not
increase welfare. Our equivalence results have a similar flavor to that of Correia et al. (2008),
who derive equivalence results considering a consumption tax in representative-agent economies
with no capital. Using alternative taxes, we prove similar results considering heterogeneous
portfolio holdings with both real and nominal assets.

Other papers consider heterogeneous-agent models with sticky wages instead of sticky prices
(Hagedorn et al., 2019, Auclert et al., 2024 or Alves and Violante, 2024). This avoids the
countercyclical profits generated by the sticky-price assumption. Sticky wages are formalized
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using the labor market model Erceg et al. (2000) developed in a representative-agent economy.
The normative implication of sticky wages in representative-agent economies has been analyzed
in Chugh (2006) and Galí (2015) among others. In particular, it features zero wage inflation
in the case of technology shocks. To our knowledge, our paper is the first to derive optimal
monetary policy in a HANK model with sticky wages.

This paper also connects to the literature investigating optimal policies with incomplete
markets and heterogeneous agents. A first strand of this literature relies on tractable models
featuring a simple distribution of wealth, which enables identifying the trade-offs faced by optimal
policies. Challe (2020) solves for optimal monetary policy in a “zero-liquidity” environment
with endogenous risk. Bilbiie and Ragot (2021) study optimal monetary policy in a tractable
model with limited heterogeneity and money. Bilbiie (2024) analyzes a no-trade equilibrium
with two types of agents. McKay and Reis (2021) solve for optimal simple fiscal rules (automatic
stabilizers) in a tractable model considering exogenous monetary policy.

A second strand of the literature analyses optimal policies with more general distributions
of wealth. This is especially true for the literature on optimal fiscal policy in real economies
with incomplete-market and heterogeneous-agent models (Aiyagari et al., 2002; Werning, 2007;
Bassetto, 2014; Açikgöz et al., 2022; Dyrda and Pedroni, 2022; LeGrand and Ragot, 2024
among others). In this strand, a couple of recent papers study optimal monetary policy with
incomplete insurance-markets. Nuño and Thomas (2022) solve for optimal monetary policy
under commitment in an economy with uninsurable idiosyncratic risk, nominal long-term bonds,
and costly inflation. They propose a methodology based on the calculus of variation. They
show that the optimal policy features inflation front-loading that can be sizable in a time-0
problem, but that inflation volatility is reduced in a timeless perspective. Smirnov (2022) and
Dávila and Schaab (2023) build on this framework and solve for the optimal monetary policy
in a closed economy. They also find that the optimal deviation from price stability is close
to 0. Acharya et al. (2023) solve for optimal monetary policy using the tractability of the
CARA-normal environment without capital. They show that countercyclical idiosyncratic risk
creates a motive for monetary policy to be redistributive. They focus on a time-0 problem, and
in their quantitative applications, the optimal deviation from price stability remains small in
magnitude except when the price-adjustment cost becomes very small. Bhandari et al. (2021)
quantitatively solve for optimal monetary and fiscal policies in a new-Keynesian model with
aggregate shocks. They report a significant deviation from price stability at a long horizon,
which is partly immune to the time-0 bias, when fiscal instruments are missing and the initial
distribution differs from the steady-state one. Our results are consistent with those of these
two papers. When the profit distribution is tilted toward richer agents and the cost of price
adjustment is not too high, deviations from price stability have welfare-enhancing redistributive
properties. However, consistent with our theoretical equivalence result, we find that fiscal policy
- even in the form of simple rules - can reduce optimal inflation volatility.

5



McKay and Wolf (2023) solve for optimal monetary policy by considering a linear-quadratic
policy problem. They show that household heterogeneity adds a term to the usual loss function
due to distributional motives. Finally, Yang (2024) solves for optimal monetary policy by
optimizing the coefficients of a Taylor rule in a model with three redistributive channels for
inflation: an expenditure channel (households have different consumption baskets and inflation is
heterogeneous across products) and the standard Fisher and earning channels. Our contribution
to this literature is to characterize the dynamics of optimal monetary policy in a timeless
perspective, within a framework that includes capital, and occasionally binding credit constraints,
under different assumptions about fiscal policy and nominal frictions.

The paper is organized as follows. Section 2 presents the sticky-price model. Section 3
presents the optimal policies and our equivalence result in this setup. Section 4 presents the
tools to simulate the general model. Section 5 reports our quantitative results in the sticky-price
economy. Section 6 presents the findings for the sticky-wage economy. Section 7 concludes.

2 The sticky-price environment

Time is discrete, indexed by t ⩾ 0. The economy is populated by a continuum of agents of size 1,
distributed on a segment J following a non-atomic measure ℓ: ℓ(J) = 1. Following Green (1994),
we assume that the law of large numbers holds.

2.1 Risk

The sole aggregate shock in the economy affects the technology level. We denote this risk by z,
which can take any real value. The economy-wide productivity, denoted Z, is assumed to relate
to z through: Zt = exp(zt) at all dates t. The history of aggregate risk up to period t is denoted
zt := {z0, z1, . . . , zt}.

In addition to the aggregate shock, agents face an uninsurable idiosyncratic labor productivity
shock y assumed to belong to a finite set Y of strictly positive values. An agent i at any date t
can adjust their labor supply, denoted by li,t, and earns the before-tax wage rate w̃t per efficient
unit. Therefore, the agent’s total before-tax wage amounts to yi,tw̃tli,t. We assume that the
productivity process is a first-order Markov chain with a constant transition matrix, denoted by
(πyy′)y,y′ , where πyy′ is the probability to switch from productivity y ∈ Y in the current period
to productivity y′ ∈ Y in the following period. The share of agents with productivity y, denoted
by Sy, is constant across time and equal to: Sy =

∑
ỹ πỹySỹ for all y ∈ Y. Finally, a history of

productivity shocks up to date t is denoted by yt. Using transition probabilities, we can compute
the measure θt, such that θt(yt) represents the share of agents with history yt in period t.
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2.2 Preferences

In each period, the economy has two goods: a consumption good and labor. Households are
expected-utility maximizers, and they rank streams of consumption (ct)t≥0 and of labor (lt)t≥0

according to a time-separable intertemporal utility function equal to
∑∞
t=0 β

tU(ct, lt), where
β ∈ (0, 1) is a constant discount factor and U(c, l) is an instantaneous utility function. As is
standard in this class of models, we focus on the case where U is separable in consumption and
labor and is expressed as:1 U(c, l) = u(c) − v(l), where u : R+ → R and v : R+ → R are twice
continuously differentiable and increasing. Furthermore, u is concave, with u′(0) = ∞, and v is
convex.

2.3 Production

The consumption good Yt is produced by a unique profit-maximizing representative firm that
combines intermediate goods (yfj,t)j from different sectors indexed by j ∈ [0, 1] using a standard
Dixit-Stiglitz aggregator with an elasticity of substitution, denoted ε > 0:

Yt =
[ˆ 1

0
yfj,t

ε−1
ε dj

] ε
ε−1

.

For any intermediate good j ∈ [0, 1], the production yfj,t is realized by a monopolistic firm and
sold at price pj,t. The profit maximization for the firm producing the final good implies:

yfj,t =
(
pj,t
Pt

)−ε
Yt, where Pt =

(ˆ 1

0
p1−ε
j,t dj

) 1
1−ε

.

The quantity Pt is the price index of the consumption good. Intermediary firms are endowed
with a Cobb-Douglas production technology and use labor and capital as production factors.
The production technology is such that l̃j,t units of labor and k̃j,t units of capital are transformed
into Ztk̃

α
j,t l̃

1−α
j,t units of intermediate good. In equilibrium, this production will exactly cover

the demand yfj,t for the good j, which will be sold with the real price pj,t/Pt. We denote by
w̃t the real before-tax wage rate per efficient unit and r̃Kt the real before-tax net interest rate
on capital – which are both identical for all firms. The capital depreciation rate is denoted
δ > 0. Since intermediate firms have market power that they internalize, the firm’s objective is to
minimize production costs, including capital depreciation, subject to producing the demand yfj,t.
The cost function Cj,t of firm j is therefore Cj,t = minl̃j,t,k̃j,t

{(r̃Kt + δ)k̃j,t + w̃t l̃j,t}, subject to
yfj,t = Ztk̃

α
j,t l̃

1−α
j,t . Denoting by ζj,t the Lagrange multiplier of the production constraint, first-order

1Our equivalence result does not depend on this functional form. See Section 3.2 for a general function U .

7



conditions (FOCs) imply:

r̃Kt + δ = ζj,tα
yfj,t

k̃j,t
and w̃t = ζj,t(1 − α)

yfj,t

l̃j,t
. (1)

The optimum thus features a common value, denoted by ζt, independent of firm type j, with:

ζt = 1
Zt

(
r̃Kt + δ

α

)α (
w̃t

1 − α

)1−α
. (2)

Firm j’s cost is then Cj = ζty
f
j,t, which is linear in the demand yfj,t. Following the literature, we

assume the presence of a subsidy τY on the total cost, which will compensate for steady-state
distortions, such that the total cost supported by firm j is ζtyfj,t(1 − τY ). Integrating factor price
equations (1) over all firms leads to:

Kt−1 = 1
Zt

(
r̃Kt + δ

α

)α−1 (
w̃t

1 − α

)1−α
Yt and Lt = 1

Zt

(
r̃Kt + δ

α

)α (
w̃t

1 − α

)−α
Yt, (3)

where Yt is total production, for which (3) satisfies:

Yt = ZtK
α
t−1L

1−α
t = (r̃Kt + δ)Kt−1 + w̃tLt

ζt
. (4)

Finally, in this setup, the usual factor price relationships do not hold, but we still have:

Kt−1
Lt

= α

1 − α

w̃t
r̃Kt + δ

. (5)

In a real setup (featuring ζt = 1 for all t), equations (2) and (5) fall back to the standard
definitions of factor prices: r̃t + δ = αZt(Kt−1

Lt
)α−1 and w̃t = (1 − α)Zt(Kt−1

Lt
)α.

In addition to the production cost, intermediate firms face a quadratic price adjustment cost à
la Rotemberg (1982) when setting their price. Following the literature, the price adjustment cost
is proportional to the magnitude of the firm’s relative price change and equal to κ

2

(
pj,t

pj,t−1
− 1

)2
Yt,

where κ ≥ 0. We can thus deduce the real profit, denoted Ωj,t, at date t of firm j:

Ωj,t=
(
pj,t
Pt

−
(
r̃t + δ

α

)α( w̃t
1 − α

)1−α 1 − τY

Zt

)(
pj,t
Pt

)−ε
Yt − κ

2

(
pj,t
pj,t−1

− 1
)2

Yt − tYt , (6)

where tYt is a lump-sum tax financing the subsidy τY . Computing firm j’s intertemporal profit
requires us to define the firm’s pricing kernel. In a heterogeneous agent economy, there is no
obvious choice for the pricing kernel. We discuss this in Section 2.7. For the moment, we assume
only that the firm’s j pricing kernel is independent of its type, and we denote it by Mt

M0
. With this

notation, firm j’s program, which consists in choosing the price schedule (pj,t)t≥0 to maximize
the intertemporal profit at date 0, can be expressed as: max(pj,t)t≥0 E0[

∑∞
t=0 β

t Mt
M0

Ωj,t]. Since this
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program yields a solution independent of the firm’s type j, all firms in the symmetric equilibrium
will charge the same price: pj,t = Pt. Denoting the gross inflation rate as ΠP

t = Pt
Pt−1

and setting
τY = 1

ε to obtain an efficient steady state, we obtain the standard equation characterizing the
Phillips curve in our environment:

ΠP
t (ΠP

t − 1) = ε− 1
κ

(ζt − 1) + βEtΠP
t+1(ΠP

t+1 − 1)Yt+1
Yt

Mt+1
Mt

. (7)

The real profit is independent of the firm’s type and can be expressed as follows:

Ωt =
(

1 − ζt − κ

2 (ΠP
t − 1)2

)
Yt. (8)

2.4 Assets

Agents have the possibility to trade two assets. The first one is nominal public debt, whose
supply size is denoted by Bt at date t. Public debt is issued by the government and is assumed
to be exempt of default risk. The nominal debt pays off a nominal gross and pre-tax interest
rate that is predetermined. In other words, the nominal interest rate between dates t− 1 and t

is known at t − 1. We denote this (gross and before tax) nominal interest rate by R̃Nt−1. The
associated real before-tax (gross) interest rate for public debt is R̃Nt−1/ΠP

t . Note that due to
inflation, this ex-post real rate is not predetermined. We denote by bi,t the debt investment of
agent i. We assume that agents face nominal borrowing constraints, and their nominal debt
holdings must be higher than −b̄ ≤ 0. In the rest of the paper, we will focus on the case where
the credit limit is above the steady-state natural borrowing limit.2

The second asset consists of capital shares, which pay off a (net and before-tax) real interest
rate r̃Kt – as introduced above. We denote by ki,t the share of capital held by agent i. We assume
that agents cannot issue any real claim and real asset holdings must remain positive.

2.5 Government, fiscal tools and monetary policy

In each period t, the government has to finance an exogenous public good expenditure Gt, as well
as lump-sum transfers Tt ≥ 0.3 These transfers can be thought of as social transfers, which can
generate progressivity in the overall tax system. Heathcote et al. (2017) have shown that such
transfers are needed to properly replicate the US fiscal system. The government has several tools
for financing these expenditures. First, the government can rely on four different taxes. The first
two taxes, whose rates are denoted by τKt and τBt , are distortionary taxes, which are levied on real
and nominal asset payoffs respectively. Second, the government also fully taxes the firms’ profits,

2Aiyagari (1994) discusses the relevant values of the natural borrowing limit in an economy without aggregate
shocks. Shin (2006) provides a similar discussion in the presence of aggregate shocks. A standard value in the
literature is a zero borrowing limit, which ensures that consumption remains positive in all states of the world.

3We rule out the possibility of lump-sum taxes as a standard assumption in this literature (Aiyagari et al., 2002).
See Bhandari et al. (2017) for an analysis of the case, where lump-sum taxes can be the planner’s instruments.
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which limits the distortions implied by profit distribution. Finally, the last tax, whose rate is
denoted by τLt , concerns labor income. In addition to these taxes, the government can also issue
a one-period public nominal bond; the amount of public debt outstanding at date t is denoted
by Bt. To sum up, fiscal policy is characterized by five instruments (τLt , τKt , τBt , Tt, Bt)t≥0 given
an exogenous path of public spending (Gt)t≥0.

After-tax quantities are denoted without a tilde. The real after-tax wage rate wt, as well as
the real after-tax interest rates rKt , and RNt (for capital and public debt, respectively) are as
such expressed as follows:

wt = (1 − τLt )w̃t, (9)

rKt = (1 − τKt )r̃Kt ,
RNt
ΠP
t

− 1 = (1 − τBt )(
R̃Nt−1
ΠP
t

− 1), (10)

Taxes on interest-bearing assets are asset-specific and are levied on real returns. The period-t
real return on the nominal interest rate R̃Nt−1, set in period t− 1, is affected by both the period-t
inflation rate and the period-t tax τBt (hence the notation RNt in (10)).

The government uses its financial resources, comprised of labor and asset tax revenue and
public debt issuance, to finance public goods, lump-sum transfers, and debt repayment:

G+
R̃Nt−1
ΠP
t

Bt−1 + Tt ≤ τLt w̃tLt + τKt r̃
K
t Kt−1 + τBt

(
R̃Nt−1
ΠP
t

− 1
)
Bt−1 + Ωt +Bt.

The expression of this government budget constraint can be simplified, following Chamley (1986).
Using the relationships (1) and (4), as well as the definition of post-tax rates in equations (9)
and (10), the governmental budget constraint becomes:

G+ RNt
ΠP
t

Bt−1 + rKt Kt−1 + wtLt + Tt = Bt +
(

1 − κ

2 (ΠP
t − 1)2

)
Yt − δKt−1. (11)

Monetary policy consists in choosing the nominal interest rate R̃Nt on public debt (between t and
t+ 1), which affects the gross inflation rate ΠP

t . The choice of optimal monetary-fiscal policy is
thus a choice of the path of the instruments (τLt , τKt , τBt , Tt, Bt, R̃Nt ,ΠP

t )t≥0. These instruments
are not independent of each other and are intertwined through the budget constraint of the
government and the Phillips curve.

2.6 Agents’ program, resource constraints, and equilibrium definition

Each agent i is endowed at date 0 by an initial real and nominal wealth ki,−1 and bi,−1 and an
initial productive status yi,0. At future dates, an agent’s nominal savings pay off the post-tax
gross interest rate RN

t

ΠP
t

between period t − 1 and period t, while their real savings pay off the
post-tax gross rate 1 + rKt . Formally, the agent’s program can be expressed, for given initial
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endowments ki,−1 and bi,−1 and given initial shocks yi,0 and z0, as:

max
{ci,t,li,t,ki,t,bi,t}∞

t=0

E0

∞∑
t=0

βt (u(ci,t) − v(li,t)) , (12)

ci,t + ki,t + bi,t = (1 + rKt )ki,t−1 + RNt
ΠP
t

bi,t−1 + wtyi,tli,t + Tt, (13)

bi,t ≥ −b̄, ki,t ≥ 0, ci,t > 0, li,t > 0, (14)

where E0 is an expectation operator over both idiosyncratic and aggregate risk.
Equation (13) can be used to discuss the effect of fiscal and monetary policies in relationship

to the literature. First, an unexpected change in an asset tax (τKt or τBt ) affects period t

income, proportionally to interest payments on past real or nominal savings payoffs (r̃Kt ki,t−1

or ( R̃
N
t−1

ΠP
t

− 1)bi,t−1 respectively). Past savings payoffs are the amount of unhedged interest rate
exposures (UREs) at period t− 1, using the wording of Auclert (2019). Second, an unexpected
change in inflation affects the return on the nominal holdings, RN

t

ΠP
t

, due to a Fisher effect. Third,
labor tax affects the post-tax wage rate, which generates heterogeneous income and labor-supply
effects. Finally, a change in the lump-sum transfer uniformly affects total income without
distortion.

At date 0, an agent decides their plans for consumption (ci,t)t≥0, labor supply (li,t)t≥0, and
saving (bi,t)t≥0 and (ki,t)t≥0, which maximize their intertemporal utility (12) subject to the
budget constraint (13) and the borrowing limits and positivity constraints (14). These decisions
are functions of the initial state (bi,−1, ki,−1, yi,0), of the history of the idiosyncratic shock yti
and of the history of the aggregate shocks zt. Thus, there exist sequences of functions, defined
over ([−b̄; +∞) × [0; +∞) × Y) × Yt × Rt and denoted by (ct, bt, kt, lt)t≥0, such that an agent’s
optimal decisions can be written as follows:4

ci,t = ct((bi,−1, ki,−1, yi,0), yti , zt), bi,t = bt((bi,−1, ki,−1, yi,0), yti , zt), (15)

ki,t = kt((bi,−1, ki,−1, yi,0), yti , zt), li,t = lt((bi,−1, ki,−1, yi,0), yti , zt).

In what follows, we simplify the notation and keep the i-index. For instance, we write ci,t instead
of ct((bi,−1, ki,−1, yi,0), yti , zt).

The FOCs corresponding to the agent’s program (12)–(14) are:

u′(ci,t) = βEt
[
(1 + rKt+1)u′(ci,t+1)

]
+ νki,t, (16)

= βEt
[
RNt+1
Πt+1

u′(ci,t+1)
]

+ νbi,t, (17)

v′(li,t) = wtyi,tu
′(ci,t), (18)

4The existence of such functions is proven in Miao (2006), Cheridito and Sagredo (2016), and Açikgöz (2018).
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where the discounted Lagrange multipliers of the real and nominal credit constraints of agent i
are denoted by νki,t and νbi,t, respectively. Each of these Lagrange multipliers is null when agent i
is not credit-constrained along the instrument under consideration.

We now express the economy-wide constraints:
ˆ
i
bi,tℓ(di) = Bt,

ˆ
i
ki,tℓ(di) = Kt,

ˆ
i
yi,tli,tℓ(di) = Lt, (19)

ˆ
i
ci,tℓ(di) +Gt +Kt =

(
1 − κ

2 (ΠP
t − 1)2

)
Yt +Kt−1 − δKt−1, (20)

which correspond to the clearing of the nominal and real financial markets, of the labor market,
and of the goods market, respectively.5

Equilibrium definition. Our definition of a market equilibrium can be stated as follows.

Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection
of individual functions (ci,t, li,t, bi,t, ki,t, νbi,t, νki,t)t≥0,i∈I , aggregate quantities (Kt, Lt, Yt,Ωt, ζt)t≥0,
price processes (wt, rKt , RNt , w̃t, r̃Kt , R̃Nt )t≥0, fiscal policies (τLt , τKt , τBt , Bt, Tt)t≥0, and monetary
policies (ΠP

t )t≥0 such that, for an initial wealth and productivity distribution (bi,−1, ki,−1, yi,0)i∈I ,
and for initial values of capital stock and public debt verifying K−1 =

´
i ki,−1ℓ(di) and B−1 =´

i bi,−1ℓ(di), and for an initial value of the aggregate shock z0, we have:

1. given prices, the functions (ci,t, li,t, bi,t, ki,t, νbi,t, νki,t)t≥0,i∈I solve the agent’s optimization
program in equations (12)–(14);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equations (19) and
(20) hold;

3. the government budget is balanced at all dates: equation (11) holds for all t ≥ 0;

4. factor prices (wt, rKt , RNt , w̃t, r̃Kt , R̃Nt )t≥0 are consistent with condition (5), as well as with
post-tax definitions (9) and (10);

5. firms’ profits Ωt and the quantity ζt are consistent with equations (2) and (8);

6. the inflation path (ΠP
t )t≥0 is consistent with the Phillips curve: at any date t ≥ 0, equation

(7) holds.
5It would be equivalent to use the sequential representation and to integrate over initial states (of measure

Λ) and idiosyncratic histories (of measure θ). For instance, nominal savings can be written as:
´

i
bi,tℓ(di) =∑

yt
i

∈Yt

∑
y0∈Y

´
b−1∈[−b̄,+∞)

´
k−1∈[0,+∞) bt((b−1, k−1, y0), yt

i , zt)θt(yt
i)Λ(db−1, dk−1, y0) = Bt.
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2.7 The Ramsey problem

The goal of this paper is to determine the optimal monetary-fiscal policy that generates the sequen-
tial equilibrium which maximizes an explicit aggregate welfare criterion. This is a difficult question,
as monetary-fiscal policy is composed of seven instruments (τLt , τKt , τBt , Tt, Bt, R̃Nt ,ΠP

t )t≥0 which
affect the saving decisions and the labor supplies of all agents, the capital stock, and price
dynamics. Interestingly, monetary policy has to balance the cost of output destruction (through
price adjustment costs), nominal debt monetization, and the indirect effect on mark-ups.

Aggregate welfare. We consider a utilitarian welfare function, where all agents are equally
weighted. Formally, the aggregate welfare criterion can be expressed as follows:

W0 := E0

[ ∞∑
t=0

βt
ˆ
i
(u(ci,t) − v(li,t)) ℓ(di)

]
. (21)

Choosing the pricing kernel. In a heterogeneous-agent economy, there is no straightforward
choice for the firm’s pricing kernel. We follow Bhandari et al. (2021) and Acharya et al. (2023)
and assume that firm’s pricing kernel is risk-neutral. More precisely, the pricing kernel Mt is
constant and normalized to 1 for all t: Mt := 1. As noted by others (Bhandari et al., 2021) and
as we checked ourselves, the choice of the pricing kernel has minor quantitative effects.6

6We also considered a firm’s pricing kernel defined based on the weighted marginal utilities of agents: Mt :=´
i
u′(ci,t)ℓ(di). This has very small impacts on our results.

13



The Ramsey program. The Ramsey program can be expressed using post-tax notation as:

max
(τL

t ,τ
K
t ,τB

t ,Bt,Tt,ΠP
t ,wt,rK

t ,R
N
t ,w̃t,r̃K

t ,R̃
N
t ,Kt,Lt,Yt,Ωt,ζt,(ci,t,li,t,bi,t,ki,t,νb

i,t,ν
k
i,t)i)t≥0

W0, (22)

G+ RNt
ΠP
t

Bt−1 + rKt Kt−1 + wtLt + Tt = Bt +
(

1 − κ

2 (ΠP
t − 1)2

)
Yt − δKt−1, (23)

for all i ∈ I: ci,t + ki,t + bi,t = (1 + rKt )ki,t−1 + RNt
ΠP
t

bi,t−1 + wtyi,tli,t + Tt, (24)

bi,t ≥ −b̄, νbi,t(bi,t + b̄) = 0, νbi,t ≥ 0, (25)

ki,t ≥ 0, νki,tki,t = 0, νki,t ≥ 0, (26)

u′(ci,t) = βEt
[
(1 + rKt+1)u′(ci,t+1)

]
+ νki,t, (27)

u′(ci,t) = βEt
[
RNt+1
ΠP
t+1

u′(ci,t+1)
]

+ νbi,t, (28)

v′(li,t) = wtyi,tu
′(ci,t), (29)

ΠP
t (ΠP

t − 1) = ε− 1
κ

(ζt − 1) + βEt
[
ΠP
t+1(ΠP

t+1 − 1)Yt+1
Yt

]
, (30)

Bt =
ˆ
i
bi,tℓ(di), Kt =

ˆ
i
ki,tℓ(di), Lt =

ˆ
i
yi,tli,tℓ(di), (31)

and subject to other constraints (which are not reported here for space constraints): the definition
(2) of ζt, the definition (4) of Yt, the definition (8) of profits Ωt, the factor-price relationship (5),
the definitions (9)–(10) of post-tax quantities, the positivity of labor and consumption choices,
and initial conditions.

The constraints in the Ramsey program include: the governmental and individual budget
constraints (23) and (24), the two individual credit constraints on nominal and real asset holdings
(and related constraints on νki,t and νbi,t) (25) and (26), Euler equations for consumption and
labor (27), (28), (29), the Phillips curve (30), and market clearing conditions for financial and
labor markets (31). To simplify the derivation of FOCs, we use some aspects of the methodology
of Marcet and Marimon (2019), which is sometimes called the Lagrangian method (Golosov
et al., 2016), applied to incomplete-market environments. We denote by βtλi,k,t, βtλi,b,t, and
βtλi,l,t the Lagrange multipliers of the Euler equations (27)–(29) of agent i at date t. Similarly,
we denote by βtγt the Lagrange multiplier of equation (30) of the Phillips curve. The Lagrange
multiplier of the government budget constraint is βtµt.

The Ramsey program (22)–(31) could be simplified further by following Chamley (1986) and
removing taxes and pre-tax quantities, such that the planner directly chooses post-tax quantities.
Pre-tax quantities can then be deduced from their definitions (5) and (8). The definitions
(9)–(10) of post-tax quantities can be used to recover tax paths from pre- and post-tax quantities.
However, we will also consider economies where some fiscal instruments are kept fixed. We have
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thus chosen to provide the expression of the full-fledged version of the program, where fixing
taxes only involves adding a constraint to the program.

As a final remark, the Ramsey program can be written in a recursive form. The state
space for the planner and all agents is actually very large. It is the joint distribution over
past values of Lagrange multipliers, wealth, productivity levels and the current aggregate state.
This inclusion of past values of Lagrange multipliers, which makes the problem difficult, stems
from the commitment of the planner not to surprise agents, such that their Euler equations
hold in expectation. We omit this representation as the discussion of FOCs in the sequential
representation is more intuitive.

3 Optimal policies

This section presents our main equivalence result and analyzes fiscal and monetary policies in
different institutional setups. The analysis is greatly simplified if one introduces a new concept,
the social valuation of liquidity (SVL) for agent i, denoted by ψi,t, and formally defined as:

ψi,t := u′(ci,t)︸ ︷︷ ︸
direct effect

−
(
λi,k,t − (1 + rKt )λi,k,t−1

)
u′′(ci,t)︸ ︷︷ ︸

effect on real savings

(32)

−
(
λi,b,t − RNt

ΠP
t

λi,b,t−1

)
u′′(ci,t)︸ ︷︷ ︸

effect on nominal savings

+ λi,l,tyi,twtu
′′(ci,t)︸ ︷︷ ︸

effect on labor supply

.

The valuation ψi,t measures the benefit – from the planner’s perspective – of transferring one
extra unit of consumption to agent i. This can be interpreted as the planner’s version of the
marginal utility of consumption for the agent.7 As can be seen in equation (32), this valuation
consists of four terms. The first is the marginal utility of consumption u′(ci,t), which is the private
valuation of liquidity for agent i. The three other terms can be understood as the internalization,
by the planner, of the economy-wide externalities of this extra consumption unit. More precisely,
the second and third terms in (32) take into consideration the impact of the extra consumption
unit on saving incentives from periods t− 1 to t and from periods t to t+ 1. The interpretation
of both terms is similar, except that they involve real and nominal savings respectively. An extra
consumption unit makes the agent more willing to smooth their consumption between periods t
and t+ 1, and thus makes their Euler equation (either nominal or real) more “binding”. This
more “binding” constraint reduces utility by the algebraic quantity u′′(ci,t)λi,x,t, where λi,x,t is
the Lagrange multiplier of the agent’s Euler equation at date t (whether it’s nominal with x = b

or real with x = k). The extra consumption unit at t also makes the agent less willing to smooth
her consumption between periods t− 1 and t and therefore “relaxes” the constraint at date t− 1.

7To simplify the notation, we keep the index i, but the sequential representation can be derived along the lines
of equation (15).
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This is reflected in the quantity λi,x,t−1 (x = b, k). In the absence of savings externalities (as in
the representative-agent case), the Lagrange multipliers λi,x,t would be 0.

Finally, the fourth term reflects the wealth effect of the labor supply. Indeed, transferring an
extra consumption unit to agent i deters their labor supply incentives through their labor supply
Euler equation (18). This effect has to be internalized by the planner. Note that this term is
present because we have chosen a utility function that is separable in labor and consumption. It
would be absent with a GHH utility function.

Another key quantity is µt, the Lagrange multiplier on the governmental budget constraint.
The quantity µt represents the marginal cost in period t of transferring one extra unit of
consumption to households. Therefore, the quantity ψi,t−µt can be interpreted as the “net” SVL:
this is from the planner’s perspective, the benefit of transferring one extra unit of consumption
to agent i, net of the governmental cost. We thus define:

ψ̂i,t := ψi,t − µt. (33)

The interpretation of FOCs is greatly clarified by expressing them using ψ̂i,t rather than the
multiplier on Euler equations, λi,t.

3.1 The flexible-price economy

Our main result below is that the planner reproduces the flexible-price allocations, if they are
allowed to choose capital and labor taxes. We thus first analyze the flexible-price allocation, in
which the price adjustment cost is κ = 0.8 In this case, the Phillips curve does not constrain
the planner’s choices and its associated Lagrange multiplier is γt = 0. We can therefore follow
Chamley (1986) and express all of the planner’s constraints in post-tax prices. The Ramsey
equilibrium can thus be derived using a narrower set of variables, which simplifies the algebra.
Taxes are then recovered from the allocation. The before-tax rates w̃t and r̃Kt can be deduced
from equations (2) and (5) with ζt = 1. Taxes τLt and τKt are obtained from the relationships
between pre-tax and post-tax rates (9) and (10). Finally, profits are null and the nominal rate
R̃Nt−1 and the nominal tax τBt are undetermined.9

The resolution of the Ramsey program in Appendix A.2 shows that a solution is characterized
by: (i) a real and nominal Euler-like equation for each individual valuation ψ̂i,t (as long as i is
unconstrained), and (ii) four FOCs related to the planner’s four instruments.

The FOCs with respect to nominal individual savings for non-credit-constrained agents can
8Within the literature on optimal fiscal policy in heterogeneous agent models (Werning, 2007; Bassetto, 2014;

Açikgöz et al., 2022; or Dyrda and Pedroni, 2022, among others), the concept of net SVL is new, to the best of our
knowledge. It considerably eases the interpretation of the planner’s FOCs and numerical simulations.

9Indeed, the government pays the before-tax rate R̃N
t−1 and receives the nominal tax τB

t , and both quantities
have the same base, which is the previous-period public debt. Hence the government only cares about the post-tax
nominal rate, like households.
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be written as follows:

ψ̂i,t = βEt
[
RNt+1ψ̂i,t+1

]
. (34)

Constrained agents have no nominal Euler equation, as bi,t = −b̄ and λi,b,t = 0. Equation (34)
states that the net SVL should be smoothed out over time with the post-tax nominal interest
rate. It can be interpreted as a Euler-like equation for the planner and generalizes the standard
individual Euler equation by taking into account the externalities of saving choices. Similarly,
the real Euler-like equation, corresponding to real saving choices of unconstrained agents, can be
written as follows:

ψ̂i,t = βEt
[
(1 + rKt+1)ψ̂i,t+1

]
+ βEt

[
(1 + r̃Kt+1)µt+1

]
− µt, (35)

while for real constrained agents, we have ki,t = 0 and λi,k,t = 0. The differences between the
real and nominal Euler-like equations are twofold. First, the Euler equation (35) for ψ̂i,t now
involves the post-tax real interest rate instead of the nominal one, as in equation (34). Equation
(34) also includes a supplementary smoothing term that involves the Lagrange multiplier µ on
the governmental budget constraint. This term comes from the discrepancy between the social
valuation of real savings and their cost through the governmental budget constraint. This term
is absent in the nominal savings equation (34), because the costs of governmental debt and of
households’ nominal savings are identical and both equal to RNt+1.

The third FOC concerns the individual labor supply for each agent i, and it can be expressed
as follows:

v′(li,t) + λi,l,tv
′′(li,t) = wtyi,t

(
ψ̂i,t + µt

w̃t
wt

)
. (36)

This equation equalizes the marginal social cost of labor (left-hand side) to its marginal benefit
(right-hand side). Similarly to the expression (32) of ψi,t, the marginal social cost of labor involves
the private cost v′(li,t) as well as the planner’s internalization of the general-equilibrium effect
of modifying an individual’s labor supply, which operates through the individual labor Euler
equation (hence the presence of the multiplier λi,l,t). The marginal benefits of an extra unit
of labor come from the related increase in individual consumption (through ψ̂i,t) and from the
higher output and higher labor taxes that relax the governmental budget constraint (through
µt).

The fourth condition, which concerns the post-tax wage rate wt, is:
ˆ
i
ψ̂i,tyi,tli,tℓ(di) = −

ˆ
i
λi,l,tyi,tu

′(ci,t)ℓ(di). (37)

In the absence of any effect on the labor supply, the planner would choose the wage rate so as
to set the aggregate net liquidity value – weighted by the individual labor supply in efficient
terms – to zero:

´
i ψ̂i,tyi,tli,tℓ(di) = 0, or equivalently, to equalize the social liquidity valuation to
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its marginal cost:
´
i ψi,tyi,tli,tℓ(di) = µt

´
i ai,t−1ℓ(di). However, the planner has also to take into

account the general-equilibrium distortions implied by wage variations that channel through all
individual labor supplies. These distortions are proportional to the Lagrange multipliers on the
labor Euler equations, λi,l,t.

The fifth FOC concerns the post-tax nominal interest rate RNt and is:
ˆ
i
ψ̂i,tbi,t−1ℓ(di) = −

ˆ
i
λi,b,t−1u

′(ci,t)ℓ(di). (38)

Similarly to equation (37), in the absence of any side effects, the planner would like to set
to zero the aggregate net value of liquidity among all agents – weighted by agents’ nominal
asset holdings. However, the planner also has to factor in the side effects of RNt on nominal
savings incentives, through the Euler equation. This effect is proportional to the shadow cost of
the nominal Euler equation. Note that the sign of this shadow cost depends on the planner’s
perception of the savings quantity in the economy. It is positive when the planner perceives
excess nominal savings in the economy, and negative the other way around (see LeGrand and
Ragot, 2022a, for a lengthier discussion). In consequence, for instance, when there is an excess
quantity of nominal savings in the economy, the total net valuation of liquidity is negative.

The sixth FOC regarding the post-tax real interest rate rKt can be expressed as:
ˆ
i
ψ̂i,tki,t−1ℓ(di) = −

ˆ
i
λi,k,t−1u

′(ci,t)ℓ(di). (39)

This is the exact parallel of equation (38) but for real savings instead of nominal ones.
Finally, the last FOC, regarding the lump-sum transfer Tt, is:

ˆ
i
ψ̂i,tℓ(di) ≤ 0. (40)

This is an equality when Tt > 0, and an inequality when Tt = 0. Since there are no distortions
implied by the lump-sum transfer, it is set such that the redistributive effect is null.

3.2 The equivalence result

The monetary economy features two complementary market imperfections. The first is the
monopoly power of intermediary firms, which can yield a price markup ζt different from one.
The second is the Rotemberg inefficiency, which prevents firms from setting their prices without
incurring costs. The two imperfections are complementary. Indeed, in the absence of Rotemberg
inefficiency (i.e., κ = 0), firms’ profit maximization yields ζt = 1 and the markup inefficiency
vanishes, as can be seen from the Phillips curve in equation (7). Conversely, in the absence of
imperfect competition, ζt = 1, and the Phillips curve implies that the Rotemberg inefficiency
plays no role. The planner’s objective – in a monetary setup – therefore includes minimizing the
impact of these two inefficiencies.
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We now show that linear taxes on real and nominal assets, as well as on labor, are sufficient
tools to offset these two inefficiencies along the business cycle, even when agents are heterogeneous.
To do so, we first solve for the optimal monetary and fiscal policies when the government has
access to a full set of fiscal tools. This program can be written as:

max
(Bt,Tt,ΠP

t ,wt,rK
t ,R

N
t ,w̃t,r̃K

t ,Kt,Lt,Yt,ζt,(ci,t,li,t,bi,t,ki,t)i)t≥0
W0, (41)

subject to the same equations as in the Ramsey program (22)–(31). Four observations are in
order. First, we have dropped the taxes τLt , τKt , and τBt from the Ramsey program since, as in the
flexible-price case, they can be substituted by post-tax quantities wt, rKt , and RN (and recovered
from the resulting allocation). Second, again as in the flexible-price case, the pre-tax nominal
rate R̃Nt is also dropped since it does not play any role. Third, the before-tax rates w̃t and r̃Kt

play a role only in the markup coefficient ζt of equation (2) and in the factor price equation (5).
In other words, the before-tax rates can be recovered from ζt and from the allocation. Finally, the
markup coefficient only appears in the Phillips curve and can thus be recovered from the path of
inflation. Because the planner can optimally choose the post-tax nominal rate RNt , inflation only
appears in the planner’s program through the output destruction term (i.e., −κ(ΠP

t − 1)2/2) in
the government budget constraint. Deviating from null inflation, i.e., from ΠP

t = 1, solely results
in a shrinking of the planner’s feasible set. The latter therefore chooses to set the gross inflation
rate to 1 at all dates, so as to neutralize the Rotemberg inefficiency. This also makes the price
markup inefficiency vanish. In the end, the planner faces the same program – and hence chooses
the same allocation – as in the real economy. We summarize this first result in the following
proposition.

Proposition 1 (An equivalence result) When labor and both nominal and real asset taxes
are available, the government exactly reproduces the flexible-price allocation and net inflation is
null in all periods.

The proof is in Appendix B. Proposition 1 actually holds in a more general framework, where
the period utility is general (and not only separable in consumption and labor). The equivalence
result would also hold with different market structures. In particular, distributing the profits to
a mutual fund as in Bhandari et al. (2021) would preserve the result if a time-varying tax on the
fund payoffs is available. Indeed, a noteworthy aspect of the result is that a capital tax per asset
choice is needed, hence one distinct instrument for nominal and real asset holdings.

Following the analysis of Kaplan et al. (2018) and Auclert (2019), monetary policy has
direct effects, due to price changes, and indirect effects through general-equilibrium feedback.
Proposition 1 states that the effects achieved by monetary policy can be achieved by labor
and capital taxation. Loosely speaking, on the one hand, outcomes of the direct effects can be
replicated by the linear capital tax, which globally affects the return on all savings. On the other
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hand, general equilibrium effects, affecting the real wage, can be replicated by the linear labor
tax, which creates a wedge between the marginal labor cost of the firm, determining their pricing
decision, and the labor income of households, determining their labor supply decisions. Finally,
the equivalence result holds from time-0 onwards. As a consequence, it is valid both in a time-0
perspective, when instruments are chosen in the initial period before converging to a long-run
equilibrium, and in a timeless perspective, when the economy is running for a long period such
that the effects of initial conditions have vanished.

Note that the result of Proposition 1 would not hold anymore if the nominal tax is removed
as an independent instrument and, for instance, set equal to the real capital tax. In that case
inflation would be used to partly substitute for the absence of a specific nominal instrument.
Formally, we could not write the program using post-tax quantities as we did, and pre- and
post-tax quantities would not be independent of each other.

The result of Proposition 1 is in the same vein as Correia et al. (2008) and Correia et al.
(2013), who also show that one can recover price stability if the planer has access to a time-varying
consumption tax in a complete market environment. The inclusion of nominal and real asset
taxes (instead of a consumption tax) allows us to connect our result to the literature on optimal
capital taxation in the heterogeneous-agent literature.10

4 Simulating economies with optimal monetary policy and sub-
optimal fiscal policies

This section introduces additional assumptions in order to simulate the model with an exogenous
fiscal system. First, following the literature (Gornemann et al., 2016; Bhandari et al., 2021,
among many others), we introduce a risk-neutral mutual fund in Section 4.1 to remove agents’
portfolio choice. We specify the fiscal rule in Section 4.2 and present the Ramsey program in
Section 4.3. Finally, Section 4.4 presents the truncation theory that is used to simulate the
model.

4.1 Introducing a mutual fund

The mutual fund collects all interest-bearing asset payoffs, – i.e., the nominal returns of public
debt and the real returns of the capital stock – and issues claims for households to invest in.
Fund claims are the only asset in which households can now invest, and the fund’s returns to
households are taxed. All the theoretical results of the previous section, and in particular the
equivalence result of Proposition 1, remain valid with this new market structure.

10Correia et al. (2008) analyze an economy without capital and with no heterogeneity in asset holdings. In
our environment with capital and heterogeneous asset holdings, we need one tax for each asset. In addition, the
inclusion of capital tax may be more relevant quantitatively, at least in the US (see Trabandt and Uhlig, 2011).

20



The (before-tax) interest rate paid by this fund to agents is denoted by r̃t. The three interest
rates, for public debt, capital, and the fund, are connected by two different relationships. The
first reflects the non-profit condition of the fund. We denote by At the total asset amount in the
economy, equal to the sum of public debt and capital: At = Kt +Bt. Since the fund holds all
the public debt and the capital and sell shares, its non-profit condition at date t implies:

r̃tAt−1 = r̃Kt Kt−1 +
(
R̃Nt−1
ΠP
t

− 1
)
Bt−1. (42)

The second relationship is the no-arbitrage condition between public debt holdings and capital
shares. This condition states that one unit of consumption invested in each of the two assets
should yield the same expected return. Formally, this condition can be written as:

Et

[
R̃Nt

ΠP
t+1

]
= Et

[
1 + r̃Kt+1

]
. (43)

Because of the fund intermediation, households make no actual portfolio choice, and we will
denote by at their holdings in fund claims. Agents face borrowing constraints, and their fund
holdings must be higher than −ā ≤ 0.

With the introduction of the mutual fund, there is only a single tax on the interest payments
of fund shares. We still denote τKt this unique capital tax, and the post-tax fund interest rate is:

rt = (1 − τKt )r̃t. (44)

With this notation, households’ budget constraints and credit limits are:

ai,t + ci,t = (1 + rt)ai,t−1 + wtyi,tli,t + Tt, (45)

ai,t ≥ −a. (46)

Because of the absence of portfolio choice, households have a unique consumption Euler equation:

u′(ci,t) = βEt
[
(1 + rt+1)u′(ci,t+1)

]
+ νi,t, (47)

where βtνi,t is the Lagrange multiplier on the credit constraint (46). The labor FOC (29) is
unchanged. The governmental budget constraint and the financial market clearing conditions
are:

G+Bt−1 + rtAt−1 + wtLt + Tt = Bt +
(

1 − κ

2 (ΠP
t − 1)2

)
Yt − δKt−1, (48)

ˆ
i
ai,tℓ(di) = At = Kt +Bt. (49)
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4.2 The fiscal rule

We consider a fiscal system that has an affine structure, composed of lump-sum transfers and
linear marginal tax rates. Such a system has often been used in the literature because it allows
one to simply reproduce the redistributivity of the US fiscal system, as shown for instance by
Heathcote et al. (2017) and Dyrda and Pedroni (2022). Importantly, this fiscal system is not set
optimally, but through ad-hoc fiscal rules. For tax rates, we extend the analysis of Vegh and
Vuletin (2015) to the 1960-2023 period and verify that the tax rates on personal and corporate
incomes are acyclical in the United States. The empirically relevant case therefore corresponds to
maintaining constant marginal tax rates over the business cycle. Our empirical analysis can be
found in Appendix C.1.11 For the lump-sum tax, we follow the standard rule of Bohn (1998), in
which the primary budget depends on the deviation of the public debt from its long-run target.

Formally, we assume that taxes are defined through the following rules:

τLt = τL∗ , (50)

τKt = τK∗ , (51)

Tt = T∗ − σT (Zt − Z∗) − σB(Bt −B∗), (52)

where T∗, τL∗ , τK∗ , B∗, and Z∗ are steady-state values of the corresponding variables. Keeping
public debt stationary requires σB > 0, and different values for σT will imply different elasticities
of public debt to TFP.

4.3 The Ramsey allocation

The Ramsey planner’s program can be written as:

max
(wt,rt,w̃t,r̃K

t ,R̃
N
t ,Tt,Kt,Lt,ΠP

t ,(ai,t,ci,t,li,t,νi,t)i)t≥0

W0, (53)

s.t. τKt , τLt , Bt following the fiscal rules (50)–(52), (54)

and subject to: the governmental budget constraint (48), the household budget constraint (45),
the household credit constraint (46), the Euler equation on consumption (47), the FOC on labor
(18) – which is unchanged, the Phillips curve (7), the market clearing condition (49), the labor
market clearing condition (19), the fund no-profit condition (42), the no-arbitrage condition (43),
and the post-tax rate definitions (9) and (44).

Constraints (54) imply that the dynamics of tax rates are exogenous. This is the main
difference with Section 3: taxes cannot be adjusted over the business cycle to implement the
optimal post-tax real wage and interest rate. For this reason, there is room for inflation to be

11We consider time-varying tax rates in Appendix C.2 so as to investigate the impacts of a time-varying fiscal
system.
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used to redistribute wealth across agents and to provide insurance against aggregate shocks.
Since the algebra to determine the optimal inflation rate with fixed tax rates is more involved
than in Section 3, we focus here solely on the intuitions about the trade-offs for the inflation
rate. We formally derive all FOCs in Appendix C.2.

Deriving the FOCs of the planner for the choice of ΠP
t allows one to identify three mechanisms:

1. Changing inflation can affect the real wage due to the Phillips curve, which can be useful
as an indirect tool to transfer resources across households.

2. Unexpected inflation specifically reduces the real return on public debt, which reduces the
return on the fund and decreases real interest payments by the government.

3. Inflation destroys resources due to the adjustment cost.

These effects can be identified analytically from the program of the planner. We use the following
notation: µt denotes the Lagrange multiplier on the relevant expression of the government budget
constraint, γt the Lagrange multiplier of the New-Keynesian Phillips curve (7), Γt the Lagrange
multiplier on the no-profit condition of the fund (42), and Υt the Lagrange multiplier on the
no-arbitrage condition (43). With this notation, the FOC on inflation can be written as follows:

Marginal cost of inflation︷ ︸︸ ︷
µtκ(ΠP

t − 1) =

Manipulation of real wage

with NK Phillips curve︷ ︸︸ ︷
(γt−1 − γt)(2ΠP

t − 1) (55)

− β−1Υt−1
R̃Nt−1

Yt
(
ΠP
t

)2︸ ︷︷ ︸
Change in the nominal interest rate

+ Γt(1 − τKt )Bt−1
R̃Nt−1

Yt
(
ΠP
t

)2 .︸ ︷︷ ︸
Change in the fund interest rate

Equation (55) sets the marginal cost of inflation (on the left hand side) equal to its marginal
benefits (right hand side). The marginal cost of higher inflation is simply related to the destruction
of output, proportional to the parameter κ. This marginal cost is zero in the absence of inflation
(ΠP

t = 1). The marginal benefits include three effects that stem from the modification of prices.
First, a change in the inflation rate affects the real wage rate through the NK Phillips curve
(“manipulation of real wage”). Second, it also affects the level of the nominal interest through
the no-arbitrage condition of the fund. Third, inflation also modifies the interest rate of the
fund (which is the financial return for households) through the no-profit condition of the fund.
This effect is proportional to the size of public debt, which drives how much the nominal interest
matters for the return of the fund. The redistributive effects of these price changes are captured
by the Lagrange multipliers.
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Decreasing the fund interest rate relaxes the fund’s no-profit constraint proportionally to its
Lagrange multiplier Γt. The expression of Γt is Γt = µt − 1

At−1

´
i (ψi,tai,t−1 + λi,t−1u

′(ci,t)) ℓ(di)
(see equation (86) in Appendix C.2). So, decreasing the fund interest rate relaxes the governmental
budget constraint (valued with the multiplier µt), and generates redistribution across agents in
proportion to their beginning-of-period wealth (term

´
ψi,tai,t−1di); it also affects their saving

incentives via the Lagrange multiplier λi of the Euler equation (term
´
λi,t−1u

′(ci,t)di). These
two last terms are negative because we consider a decrease in the interest rate. The other
multipliers γt and Υt−1 have similar interpretations, which are slightly more involved because of
general equilibrium effects (see the FOCs of the Ramsey program in Appendix C.2)

4.4 Simulating the model: The truncation representation

The Ramsey problem of Section 4.3 cannot be solved with simple simulation techniques. Indeed,
the Ramsey equilibrium is now a joint distribution across wealth and Lagrange multipliers, which
is a high-dimensional object. The steady-state value of the set of Lagrange multipliers is not
easy to find, and the planner’s instruments depend on the dynamics of this joint distribution.
For this reason, we use the truncation method of LeGrand and Ragot (2022a) to determine the
joint distribution of wealth and Lagrange multipliers.12 The accuracy of optimal policies found
with this method has been further analyzed in LeGrand and Ragot (2023), for both the steady
state and the dynamics.

4.4.1 The uniform truncation method

The intuition of the method can be summarized as follows. In heterogeneous-agent models, agents
differ according to their idiosyncratic history. An agent i has a period-t history yti = {yi,0, . . . , yi,t}.
Let h = (ỹ−N+1, . . . , ỹ−1, ỹ0) be a given history of length N . In period t, an agent i is said
to have truncated history h if the history of this agent for the last N periods is equal to
h = {yi,t−n+1, . . . , yi,t}. The idea of the truncation method is to aggregate agents having the
same truncated history and to express the model using these groups of agents rather than
individuals. This generated the so-called truncated model, which features a finite state space. The
“true” Bewley model features wealth heterogeneity among the agents having the same truncated
history h. This simply comes from the heterogeneity in histories prior to the aggregation period
(i.e., more than N periods ago). We capture this within-truncated-history heterogeneity through
additional parameters – denoted by “ξs” – which are truncated-history specific. This construction
yields a finite state-space representation, which is exogenous to agents’ choices and thereby allows
one to compute optimal policies.13 The details of the truncated model can be found in Appendix

12Optimizing on simple rules in the spirit of Krusell and Smith (1998) is also hard to implement, as the shape of
inflation is highly non-linear.

13Considering wealth bins is not possible, as the savings function and thus the transitions across wealth bins is
endogenous to the planner’s policy. This would imply a fixed point which would be very hard to solve.
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D.
To find the steady-state values of the Lagrange multipliers, we use the same algorithm as in

LeGrand and Ragot (2022a):

1. Set a truncation length N and guess values for the planner’s instruments.

2. Solve the steady-state allocation of the full-fledged Bewley model with the previous
instrument values, using standard techniques.

3. Consider the truncated representation of the economy for a truncation length N .

(a) Solve for the joint distribution of wealth and Lagrange multipliers.

(b) Use the Ramsey FOCs to check whether the values of instruments are above or below
their optimal value.

4. Change the instruments’ values accordingly (or stop if their value is close enough to the
optimal value), and redo the process from Step 2.

5. Increase the truncation length N, and restart from Step 2 until increasing N has no impact
on the instruments’ values.

We analyze optimal monetary policy with a given fiscal policy. This greatly simplifies the process,
as it is known that the optimal gross inflation rate is ΠP = 1. As a consequence, using the
previous procedure it is very fast to compute the joint distribution of wealth and Lagrange
multipliers.

To use our truncation method in the presence of aggregate shocks, we further assume that:

1. The parameters (ξh)h remain constant and equal to their steady-state values.

2. The set of credit-constrained histories is time-invariant.

We thus assume that the time-variation of within-history heterogeneity is small enough for it to
have only a second-order effect. In addition, we assume that the aggregate shock is small enough
for the set of credit-constrained histories not to change in the dynamics. Both assumptions rely
on the choice of the truncation length and can be checked numerically.

4.4.2 The refined truncation method

The previous truncation method is simple to implement, but it has the drawback that it considers
many histories, some of which are very unlikely to be experienced by agents. By the law of large
numbers, these histories concern a very small number of agents. For instance, for a truncation
length of N = 5 used below, our calibration implies that many histories have a size smaller than
10−6. The idea in LeGrand and Ragot (2022b) is to consider different truncation lengths for
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different histories. For the sake of clarity, we will call this method the refined truncation, while
the former one will be called the uniform truncation. Histories more likely to be experienced
(i.e., with a bigger size) can be “refined”, which means that they can be substituted by a set of
histories with higher truncation lengths. For instance, the truncated history (y1, y1) (N = 2) can
be refined into {(y, y1, y1) : y ∈ Y}, where the group of agents who have been in productivity y1

for two consecutive period is split into CardY truncated histories.
A benefit of this construction is that the number of histories is a linear function of the

maximum truncation length, instead of an exponential function. The construction of the refined
method is detailed in LeGrand and Ragot (2022b). A difficulty of this construction is that the
set of refined histories must form a well-defined partition of the set of idiosyncratic histories
in each period. To keep the exposition simple, we solve the model with a uniform truncation
method, and only use the refinement in Section 5.5 as a robustness check.

5 Quantitative assessment of the sticky-price model

5.1 The calibration and steady-state distribution

Preferences. The period is a quarter. The discount factor is β = 0.99, and the period utility
function is: log(c) − χ−1 l1+1/φ

1+1/φ .14 The Frisch elasticity of labor supply is set to φ = 0.5, which is
the value recommended by Chetty et al. (2011) for the intensive margin in heterogeneous-agent
models. The scaling parameter is χ = 0.076, to obtain an aggregate labor supply of roughly 1/3.

Technology and TFP shock. The production function is Cobb-Douglas: Y = ZKαL1−α.
The capital share is set to α = 36% and the depreciation rate to δ = 2.5%, as in Krueger et al.
(2018) among others. The TFP process is a standard AR(1) process, with Zt = exp(zt) and
zt = ρzzt−1 + εzt , where εzt

iid∼ N (0, σ2
z). We use the values ρz = 0.95 and σz = 0.31% to obtain a

standard deviation of the TFP shock zt equal to 1% at a quarterly frequency (see Den Haan,
2010, for instance).

Idiosyncratic risk. We use a productivity process: log yt = ρy log yt−1+εyt , with εyt
iid∼ N (0, σ2

y).
We calibrate a persistence of the productivity process ρy = 0.99 and a standard deviation of
σy = 12.3%. These values are consistent with empirical evidence (Krueger et al., 2018). This
process generates a realistic empirical pattern for wealth. The Gini coefficient of the wealth
distribution amounts to 0.73, while the model implies an average annual capital-to-GDP ratio of
2.5. These two values are in line with their empirical counterparts. Finally, the Rouwenhorst

14Note that matching the data constrains the Intertemporal Elasticity of Substitution (IES) parameter. Con-
sidering a log utility, we can match a Gini coefficient of wealth of 0.73 close to its empirical counterpart of 0.77.
Considering a CRRA function u(c) = c1−σ

1−σ
with σ = 2 reduces the Gini coefficient to 0.57. A higher value of σ

decreases the Gini coefficient, as agents save more to self-insure.
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(1995) procedure is used to discretize the productivity process into 5 idiosyncratic states with a
constant transition matrix.

Fiscal system. The steady-state parameters of the fiscal rules are calibrated based on the
computations of Trabandt and Uhlig (2011), who use the methodology of Mendoza et al. (1994)
on public finance data prior to 2008. This approach consists in computing a linear tax on
capital and on labor, as well as lump-sum transfers that are consistent with the governmental
budget constraint. Their estimations for the US in 2007 yield a capital tax (including both
personal and corporate taxes) of 36%, a labor tax of 28% and lump-sum transfers equal to
8% of the GDP. We then consider the steady-state values (τL∗ , τK∗ , T∗/GDP ) = (28%, 36%, 8%).
This steady-state fiscal system generates two untargeted outcomes. First, it implies a public
debt-to-GDP ratio equal to 63.5%, which is very close to the value of 63% estimated by Trabandt
and Uhlig (2011). Second, it also implies a public spending-to-GDP ratio equal to 12.1%. This
value is consistent with other quantitative investigations (Bhandari et al., 2017), even though a
little bit low compared to the postwar value, which has decreased to 14.1% in 2017, from 17% in
the 1970s.

Considering the dynamic part of the fiscal system, we implement the fiscal rules of equations
(50)–(52). Tax rates are constant and equal to their steady-state values. The two parameters, σT

and σB , of the rule à la Bohn characterize how the lump-sum tax reacts to aggregate shocks and
public debt. To set them, we use two constraints. First, we impose that a negative TFP shock
of 1% implies an average increase of debt over GDP of 2%, which lies in the range estimated
by Kim and Zhang (2021) for developed countries. Second, we also set a rule that ensures a
stationary path for public debt. We obtain that our fiscal rule is characterized by the parameters
(σT , σB) = (8.5, 4.0).

Monetary parameters. We follow the literature and assume that the elasticity of substitution
across goods is ε = 6 and the price adjustment cost is κ = 100 (see Bilbiie and Ragot, 2021,
for a discussion and references). This implies a slope of the quarterly Phillips curve of 5%, or
an average price duration of 5 quarters in the corresponding Calvo model. Indeed, the slope is
(ε− 1)/κ in the Rotemberg model and it is (1 − θ)(1 − βθ)/θ in the Calvo model, where 1/(1 − θ)
is the average price duration (Galí, 2015). We further discuss the calibration of slope values in
Section 5.4. Table 1 provides a summary of the model parameters.

Steady-state equilibrium distribution. We first simulate the full-fledged Bewley model
(i.e., without aggregate shocks) with the steady-state optimal inflation rate ΠP = 1. In Table
2, we report the wealth distribution generated by the model and compare it to the empirical
distribution. We compute a number of standard statistics – listed in the first column – including
the quintiles, the Gini coefficient, and Top 5% property.
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Parameter Description Value

Preference and technology

β Discount factor 0.99
σ Curvature utility 1
α Capital share 0.36
δ Depreciation rate 0.025
ā Credit limit 0
χ Scaling param. labor supply 0.076
φ Frisch elasticity labor supply 0.5

Shock process

ρz Autocorrelation TFP 0.95
σz Standard deviation TFP shock 0.31%
ρy Autocorrelation idio. income 0.99
σy Standard dev. idio. income 12.3%

Tax system

τK
∗ Capital tax 36%
τL

∗ Labor tax 28%
T∗ Transfer over GDP 8%

Monetary parameters

κ Price adjustment cost 100
ε Elasticity of sub. 6

Table 1: Parameter values in the baseline calibration. See text for descriptions and targets.

The empirical wealth distribution reported in the second and third columns of Table 2 is
computed using two sources, the PSID for the year 2006 and the SCF for the year 2007. The
fourth column reports the wealth distribution generated by our model. The Gini coefficient of
the model is 0.73, whereas it is 0.77 in the data. The model reproduces well the bottom of the
distribution, but doesn’t do as well for the very top. It is known that additional model features
must be introduced to match the high wealth inequality in the US, such as heterogeneous discount
rates, as in Krusell and Smith (1998), entrepreneurship, as in Quadrini (1999), or stochastic
returns (Guvenen et al., 2023).

Truncation. We now construct the truncated model. We use a truncation length of N = 5,
which with our 5 states, implies 55 = 3125 different truncated histories. We only focus on
histories with positive size (some histories are never experienced if there is some zero probability
to switch from one state to another), which reduces the number of histories to 727. LeGrand
and Ragot (2022a), showed that in environments without nominal frictions, a small truncation
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Data Model

Wealth statistics PSID, 06 SCF, 07

Q1 −0.9 −0.2 0.0
Q2 0.8 1.2 0.2
Q3 4.4 4.6 5.2
Q4 13.0 11.9 18.2
Q5 82.7 82.5 76.4

Top 5% 36.5 36.4 33.2
Gini 0.77 0.78 0.73

Table 2: Wealth distribution in the data and in the model.

length can yield accurate results, thanks to the introduction of the ξ parameters accounting for
within-bin heterogeneity, as explained in Section 4.4.1. In Section 5.5, we show that this is also
true in the current setup and use the refined truncation as a robustness check.

5.2 Optimal inflation dynamics

We simulate the model after a transitory negative TFP shock of one standard deviation. In period
0, we assume that the economy and the various Lagrange multipliers are initialized to their steady
state values. The simulations thus involve a timeless perspective, and the economy will eventually
go back to its steady state. We compare the outcomes of three economies. The fiscal system is
common to the three economies and features constant marginal tax rates as detailed above. The
three economies differ in their monetary policies. In the benchmark economy (labeled Economy
1), monetary policy is optimally set. In the second economy (Economy 2), the inflation path
remains constant at ΠP

t = 1 for all t. Indeed, as noted in Bhandari et al. (2021), this constant
path corresponds to the optimal inflation path for a complete market economy with a TFP shock,
due to the “divine coincidence” identified by Woodford (2003). Finally, in the third economy
(Economy 3), monetary policy is implemented via a Taylor Rule.15 Comparing Economies 1 and
2 helps us identify the contribution of market incompleteness to the optimal inflation dynamics,
while comparing Economies 1 and 3 helps us to identify the contribution of the optimal policy
in reducing inflation volatility. We report in Figure 1 the Impulse Response Functions (IRFs
thereafter) for key variables of the three economies, which all start from their steady state value
in period 0 (i.e., timeless perspective). In panel 10, wage inflation is defined as the growth rate
of the nominal wage, computed using real wage and the price level: ΠW

t = wtPt
wt−1Pt−1

= ΠP
t

wt
wt−1

.

15The functional form of the Taylor rule connecting the pre-tax nominal gross rate R̃N
t to inflation is standard:

R̃N
t

R̃N =
(

ΠP
t

ΠP

)ϕΠ
, where R̃N and ΠP are steady-state values and ϕΠ is the response of the nominal interest rate to

inflation. We set ϕΠ = 1.5, which is also a standard value in the literature (see Galí, 2015).
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Figure 1: IRFs in percentage points after a negative productivity shock of one standard deviation
for relevant variables. The black line is the benchmark economy with optimal monetary policy.
The blue dashed line is Economy 2, where we impose ΠP

t = 1. The red dashed line is Economy 3,
where monetary policy follows a Taylor rule.

First, price inflation (panel 9, reported with a quarterly basis) in Economy 1 moves slightly
on impact and then decreases to converge back to its steady-state value. However, the variations
are quantitatively modest and inflation volatility is low. The absolute maximum change in the
quarterly inflation rate amounts to 0.02%. Since the inflation movements are small in magnitude,
the differences between the allocations of Economies 1 and 2 (i.e., optimal inflation rate vs.
ΠP
t = 1) are also small. Regarding the fiscal dimension, tax rates are constant by construction

and the elasticity of public debt over GDP to TFP can be verified to be around −2: a fall of TFP
by one standard deviation increases public debt ratio by 0.6%. The comparison of Economies
1 and 2 allows us to check that the optimal inflation path provides some insurance against
aggregate risk. This will be more clearly detailed in Section 5.3 through welfare comparisons. In
Economy 3, the Taylor rule leads to a slight overreaction of inflation that decreases more than
with optimal policy. This implies that the drop in GDP is lower and more persistent than in
Economy 1. However, the effects are small due to the limited magnitude of the overreaction.
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Overall, these results are consistent with those of Bhandari et al. (2021), but exhibit lower
inflation volatility, due to a different calibration strategy. Indeed, as we verify in Appendix E
below, the inflation response is quantitatively sensitive to assumptions about the slope of the
Phillips curve and the distribution of profits. A steeper Phillips curve and profit distribution
more tilted toward low-productivity agents contribute to magnifying the inflation response. We
provide second-order moments of these three economies in Appendix D.6. They confirm that
the differences between the three economies are small and that the volatility of consumption is
slightly smaller under the optimal monetary policy.

5.3 Welfare comparison

We further investigate the differences between Economies 1 and 2 by computing the welfare gap
in terms of consumption equivalents between the two economies. The welfare gap is defined as
the constant percentage increase in consumption of Economy 1 (with optimal policy), for the
intertemporal welfare of Economy 1 with increased consumption to match the one of Economy 2.
Formally, using the utilitarian social welfare function (21), the welfare gap ∆ is defined as:

E0

[ ∞∑
t=0

βt
ˆ
i

(
u((1 + ∆)c(1)

i,t ) − v(l(1)
i,t )

)
ℓ(di)

]
= E0

[ ∞∑
t=0

βt
ˆ
i

(
u(c(2)

i,t ) − v(l(2)
i,t )

)
ℓ(di)

]
, (56)

where the superscripts (1) and (2) refer to the allocation of Economies 1 and 2, respectively.
Since the optimal policy is welfare-improving by definition, we expect the welfare gap to be
positive: ∆ > 0.

In our environment, and following the discussions of Dyrda and Pedroni (2022) and Bhandari
et al. (2023), this computation of welfare gaps captures insurance effects against aggregate risk.
Indeed, we compute welfare gaps simulating the effect of two policies in the same economy,
starting from the same steady state and hit by the same shocks. The fiscal policies do not change
the steady state, and do not implement permanent transfers across agents. As a consequence, the
welfare gaps come from the ability of the different policies to provide insurance against aggregate
risks.16

To better analyze the insurance property, we can condition the welfare gaps on the productivity
of each agent. We thus compute the welfare gap ∆y (y ∈ Y) conditional on an initial productivity
level y as follows:

E0

[ ∞∑
t=0

β t̂

i
(u((1 + ∆y)c(1)

i,t )−v(l(1)
i,t ))1yi,0=yℓ(di)

]
= E0

[ ∞∑
t=0

β t̂

i
(u(c(2)

i,t )−v(l(2)
i,t ))1yi,0=yℓ(di)

]
, (57)

16Following Floden (2001) and Benabou (2002), the literature has often decomposed the total welfare gap into
three effects: a level effect, an insurance effect, and distributive effects. As we do not consider transitions starting
from an initial distribution (as Bhandari et al., 2023, or Dyrda and Pedroni, 2022), we only consider the insurance
effects.
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where 1yi,0=y = 1 if the initial state yi,0 is y and 0 otherwise. Consistently with the timeless
perspective, we implement this welfare comparison assuming that the economy starts from the
steady-state distribution. We then simulate the economy for 10,000 periods with 10 different
realizations of the aggregate shock path. The intertemporal welfare gaps are computed as an
average over these realizations, where we track agents with a given initial productivity level
(which then evolves according to the stochastic process for idiosyncratic risk). As discussed
above, the difference in the welfare gaps according to the initial productivity level should be
understood as a decomposition of the aggregate gaps of insurance across initial types.

We find that implementing the optimal monetary policy – measured as the welfare gap
between Economies 1 and 2 – generates an average welfare gain of 0.002%. This small value
can be expected from Figure 1 and from the second-order moments of Table 7. However, this
value hides heterogeneity among productivity levels, as can be seen in Figure 2, which plots the
welfare gaps between Economies 1 and 2 for different productivity levels. If all productivity levels
experience a positive welfare gain due the optimal monetary policy, the lower the productivity,
the more the agents benefit from the optimal policy. Low productive agents they enjoy a higher
reduction in consumption volatility, while more productive agents are able to self-insure, which
reduces the welfare gains of optimal policy.

Figure 2: Welfare gains by productivity level associated to optimal monetary policy. The welfare
gains are computed using equation (57).

5.4 Understanding the mechanisms

Slope of the Phillips curve. The recent empirical literature offers a wide range of estimates
for the price adjustment cost and the implied slope of the Phillips curve. We present these
alternative values in Appendix E.1, where we consider slopes varying from the low level of 0.62%
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of Hazell et al. (2022) to the high one of 23% of Barnichon and Geert (2020). These two values
correspond to average price durations in the Calvo model of 14.0 and 2.7 quarters, respectively.
The deviation from price stability is small in any case, and nominal wage moves to adjust the
real wages.

Role of the distribution of profits. As our analysis adds new ingredients to the existing
literature (namely binding credit constraints, capital accumulation, a mutual fund, timeless
perspective, and the resolution via the truncation method), we now investigate how our results
compare to those of Acharya et al. (2023), Bhandari et al. (2021), or Nuño and Thomas (2022),
among others. A first difference is that we consider a timeless perspective and not a time-0
program. As explained in Nuño and Thomas (2022), inflation deviation after a TFP shock is
larger in a period-0 problem compared to a timeless perspective, as the planner can surprise
agents with an increase in inflation in period 0, to redistribute wealth across agents.

However, some papers, such as Bhandari et al. (2021), find that inflation can sizably increase
after a TFP shock in an environment with exogenous fiscal policy, which is immune to the
time-0 inconsistency. To understand these results and the role of time-varying fiscal policy, we
analyze various models in Appendix E. First, we consider (Section E.2) a simple model, with
only two types of agents (called TANK model in the literature). It allows us to identify the key
determinants driving the inflation response, which are an unequal profit distribution, a high slope
of the Phillips curve, the absence of exogenous time-varying fiscal policy, and to a lesser extent,
a low IES of agents. An additional gain of the simple model is that it can be easily related to
the quantitative model, with a small truncation length (N = 1).

Second, we verify (Section E.3) that the factors identified in the simple model remain valid
in a quantitative model (similar to the one of Section 5). This therefore reconciles our results
with those of the literature and confirms that the small inflation volatility of Section 5 is not
driven by the introduction of the fund nor by the truncation method.

5.5 Numerical robustness

The previous simulations were based on a truncation length of N = 5. As explained in Section
4.4.2, we now use LeGrand and Ragot (2022b) to consider heterogeneous truncation lengths.
We set the truncation length Nmax = 20 for the histories with the largest size. The results are
provided in Appendix D.7. They are very similar to the results with the uniform truncation
method. In particular, the volatility of aggregate variables remain almost unchanged, while the
inflation volatility stays very low.

Finally, we also compare the simulation outcomes of the truncation method to those of the
histogram method developed by Rios-Rull (1999), Reiter (2009), and Young (2010), which is
standard for solving heterogeneous-agent models. We simulate the model calibrated with the
previous values, assuming no public spending using the histogram and truncation methods. We
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then compare their IRFs, their second-order moments, as well as average and maximum absolute
differences. The results are reported in Appendix F and appear to be very close.

5.6 Considering constrained-optimal fiscal policy

As a final robustness check, we also simulate the model for a constrained optimal fiscal policy,
in which some fiscal tools are fixed in the dynamics, whereas other tools are optimally set. To
do so, we assume that the planner considers an aggregate welfare criterion with social weights
that are history-specific. This allows us to construct a steady state Ramsey allocation, whose
(optimal) fiscal policy is equal to the previous calibration. We can then compute the optimal
dynamics around this steady state. More specifically, we consider a general welfare function that
places weights on the utility of each agent. For the sake of generality, we assume that these
weights are consistent with the sequential representation and depend on initial conditions and
an idiosyncratic history. The weight of agent i ∈ I at date t is ωi,t := ωt(yti), and the weights
satisfy 1 =

´
i ωi,tℓ(di) =

∑
yt

i∈Yt ωt(yti)θt(yti) for t ≥ 0. These history-dependent weights are also
used by McKay and Wolf (2023) and Dávila and Schaab (2024). Formally, the aggregate welfare
criterion can be expressed as follows:

W0 = E0

[ ∞∑
t=0

βt
ˆ
i
ωt(yti)U(ci,t, li,t)ℓ(di)

]
. (58)

Following the inverse optimal taxation approach, we estimate the social weights such that the
observed US fiscal system is optimal at the steady state. We then solve for the optimal inflation
and fiscal policy holding the capital tax constant or the labor tax constant. We find that the
optimal inflation rate is almost constant, with a standard deviation of 0.01% (on a quarterly
basis), confirming the result that the volatility of inflation is low when fiscal policy is partly
time-varying. The details of the algebra and of the resolution can be found in Section G.

6 The sticky-wage economy

We now turn to the analysis of the economy with sticky wages, instead of sticky prices. The
sticky-wage rigidity is another nominal rigidity studied in the literature, which has both empirical
and theoretical supports (see e.g., Chugh, 2006 or Nekarda and Ramey, 2020 and references
therein). For the sake of conciseness, we focus here solely on an economy with a mutual fund,
constant tax rates and a rule à la Bohn for public debt. This economy is the benchmark economy
that is called Economy 1 in Section 5.2, but with sticky wages instead of sticky prices. It
corresponds to the environment described in Section 4. The remainder of this section is organized
as follows. In Section 6.1, we present the specificities of the sticky-wage environment compared to
the previous setup. In Section 6.2, we derive the FOCs of the Ramsey problem in the sticky-wage
economy. In Section 6.3, we present the calibration we use. Finally, in Section 6.4, we present the
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quantitative outcomes of the model and discuss how they compare to those of the sticky-price
model.

6.1 The sticky-wage model

Our economy models sticky wages as in the model of wage bargaining of Erceg et al. (2000),
which is commonly used in the heterogeneous-agent literature (e.g., Hagedorn et al., 2019, Alves
and Violante, 2024 or Auclert et al., 2024). In this model, a continuum of unions of size 1
monopolistically supply labor. These union-specific labor supplies are then pooled together via a
competitive aggregator with a constant elasticity of substitution εW . Each union k sets its wage
Wkt so as to maximize the intertemporal welfare of its members. The adjustment of the nominal
wage implies a quadratic utility cost that is proportional to the parameter ψW , as in Auclert
et al. (2024). We focus on the symmetric equilibrium where all unions choose to set the same
wage Wt, hence all households work the same number of hours denoted Lt. This construction
involves the following wage Phillips curve:

ΠW
t (ΠW

t − 1) = εW
ψW

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)︸ ︷︷ ︸
labor gap

)
Lt + βEt

[
ΠW
t+1(ΠW

t+1 − 1)
]
, (59)

where ΠW
t = Wt

Wt−1
is the wage inflation, and wt the real post-tax wage. The details of the

derivation of the wage Phillips curve can be found in Appendix I. In equation (59), the labor gap
term captures the market power of unions that prevents the marginal disutility of labor, v′(Lt),
from equalling its marginal benefit. The latter is the sum over all agents of the hourly wage (in
efficient units) wtyi,t multiplied by the marginal utility of consumption (u′(ci,t)). Labor supplies
of the different unions are imperfect substitutes, which is captured by the term εW −1

εW
. When the

labor gap is positive, the unions progressively increase wages (due to the wage-adjustment cost),
which generates inflationary pressure and contributes to reducing the labor gap. In addition to
the labor gap, current wage inflation also depends on expected wage inflation, as is standard in
the New-Keynesian literature.

A consequence of this sticky-wage modelling is that agents do not optimally choose their labor
supply. The household’s budget constraint (45) becomes: ai,t+ ci,t = (1 + rt)ai,t−1 +wtyi,tLt+Tt,
where rt is the fund interest rate that is defined as in Section 4.1 (equations (42)–(44)) The
Euler equation (47) is unchanged, but the labor FOC (29) now does not hold. Regarding the
production side, firms no longer face quadratic price-adjustment costs. Factor prices now verify
the following standard definitions:

r̃t + δ = αZt(
Kt−1
Lt

)α−1 and w̃t = (1 − α)Zt(
Kt−1
Lt

)α. (60)

It is worth noting that in this model with sticky wages, profits are acyclical. As a result, the

35



distribution of profits, discussed in Section 5.4, plays no role in this environment. Admittedly,
alternative models of wage rigidity may generate cyclical profits. If sticky wages were to produce
pro-cyclical profits, monetary policy would have an incentive to generate less inflation during
recessions in order to provide more insurance to poorer agents, who rely primarily on labor
income. We treat acyclical profits as a useful benchmark, given that the empirical literature
remains inconclusive on this issue (Nekarda and Ramey, 2020 among others).

6.2 The Ramsey problem

As in the sticky-price economy, the Ramsey planner chooses the monetary-fiscal policy that
maximizes the aggregate welfare criterion, while being consistent with individual optimal choices.
The aggregate welfare criterion now includes the utility cost of wage inflation:

W0 = E0

[ ∞∑
t=0

βt
ˆ
i

(
u(cit) − v(Lt)

)
ℓ(di) − ψW

2 (ΠW
t − 1)2

]
. (61)

The fiscal policy follows the fiscal rules of Section 4.2. Labor and capital tax rates are constant,
while public debt follows the Bohn rule of equation (52). The lump-sum transfers Tt is then
determined by the government budget constraint, which still verifies equation (48), but with the
price adjustment cost set to zero: κ = 0. Monetary policy is now composed of three variables:
the nominal rate R̃Nt , wage inflation ΠW

t , and price inflation ΠP
t . Price inflation is a consequence

of wage inflation and real wage variations are ΠP
t = wt−1

wt
ΠW
t . Formally, the Ramsey program

can be written as follows:

max
(ΠP

t ,ΠW
t ,Kt,wt,rt,R̃N

t ,Lt,(ci,t,ai,t,νi,t)i)t

W0, (62)

Gt +Bt−1 + rt(Bt−1 +Kt−1) + wtLt + Tt = Bt + ZtK
α
t−1L

1−α
t − δKt−1, (63)

for all i ∈ I: ait + cit = (1 + rt)ait−1 + wty
i
tLt + Tt, (64)

ait ≥ −ā, νit(ait + ā) = 0, νit ≥ 0, (65)

u′(cit) = βEt
[
(1 + rt+1)u′(cit+1)

]
+ νit , (66)

ΠW
t (ΠW

t − 1) = εW
ψW

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt + Et

[
ΠW
t+1(ΠW

t+1 − 1)
]
, (67)

ΠP
t = wt−1

wt
ΠW
t (68)

together with the post tax-wage definition (9), the fund-related equations (42)–(44), the financial
market clearing condition (49), the factor price definitions (60), the fiscal rules (50)–(52), the
positivity constraints cit, lit ≥ 0, and the initial conditions (ai−1)i∈I , B−1.

The conditions of the program (62)–(68) are straightforward. Equation (73) is the budget
of the government, expressed in post-tax terms. Equations (64)–(66) are the individual budget
constraints, credit constraints, and individual Euler equations that guarantee that the chosen
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allocation is consistent with individual optimal choices. All these equations already appear in
the Ramsey program with price-rigidity of Section 4.3. Equation (67) is the wage Phillips curve,
which replaces the price Phillips curve of the sticky-price Ramsey program. Finally, equation (68)
defines the price inflation that appears in the no-profit and no-arbitrage conditions of the fund.

As in the sticky-price economy, it is useful to introduce the concept of the SVL for agent i in
a sticky-wage economy, which can be expressed as:

ψSW,it := u′(cit)︸ ︷︷ ︸
direct effect

−
(
λit − (1 + rt)λit−1

)
u′′(cit)︸ ︷︷ ︸

effect on savings

(69)

− εW − 1
ψW

γWt wtLtyi,tu
′′(ci,t)︸ ︷︷ ︸

effect on wage bargaining

.

The first two terms (“direct effect” and “effect on savings”) in equation (69) are identical to
those of the sticky-price expression (see equation (82) in Appendix C.2). Indeed, changing
consumption again has an effect on welfare and savings incentives. The main difference between
the sticky-price and the sticky-wage cases is the effect on labor supply. In the sticky-price
economy, the extra consumption of agent i directly affects their labor supply through the FOC on
labor. In the sticky-wage economy, there is no such direct outcome as there is no optimal labor
choice. However, the term “effect on wage bargaining” is an indirect outcome on the labor supply
set by unions that operates through the labor gap of the wage Phillips curve. This explains why
this effect is proportional to the Lagrange multiplier γW , which captures the welfare gain for the
planner to change wage inflation.17 The FOCs of the planner can be expressed using ψSW,it and
are derived in Appendix I.3 for the sake of conciseness.

We now present a simple implementation result in the sticky-wage economy.18

Result 1 (An implementation result) There exists an allocation implementing zero wage
inflation in an economy with exogenous fiscal rules.

The previous result states the existence of an allocation with zero wage inflation with
exogenous fiscal policy. The proof can be found in Appendix I.4. This zero-wage-inflation
allocation is appealing. As wages are sticky but prices are not, the planner can reproduce
any desired real wage dynamics by changing price inflation through monetary policy, while
keeping nominal wages unchanged so as to avoid wage-adjustment cost. The zero-wage inflation

17This term does not contradict the fact that agents are atomistic for unions. Indeed, changing the consumption
of a unique agent i implies the SVL of equation (69), but does not modify the wage: as the agent is of measure zero,
it does not change the term

´
j

yj,tu
′(cj,t)ℓ(dj) in the wage Phillips curve (67). However, the planner internalizes the

fact that if the consumption of a positive mass of agents is changed, it will affect the wage through the bargaining
process of unions.

18We could obtain a result similar to Proposition 1: the flexible wage allocation can be recovered when the fiscal
system is sufficiently rich. However, since this would significantly lengthen the presentation, we choose to focus
here on a result valid for exogenous fiscal rules.
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would be optimal in the representative-agent economy with sticky wages (Chugh, 2006). In
a heterogeneous-agent economy, this zero-wage inflation is not optimal because price inflation
involves redistribution across agents, as it affects the nominal interest rate. However, as can be
seen in the next section, this redistribution effect is quantitatively small, such that the planner
indeed implements an allocation with a low wage inflation volatility and volatile price-inflation.

6.3 The calibration

The calibration strategy is the same as in the sticky-price economy. We here discuss only those
parameters that differ from the calibration values listed in Table 1 in Section 1. The fiscal rule is
for instance unchanged. The new calibration parameters are reported in Table 3.

Preferences. The scaling parameter is now set to χ = 0.061, so as to again match an aggregate
labor supply of roughly 1

3 .

Idiosyncratic risk. We calibrate the productivity process with a persistence of ρy = 0.988 and
a standard deviation of σy = 0.154. We set these values so as to reproduce, as in the sticky-price
economy, a steady-state wealth Gini index of 0.73 and an annual capital-to-GDP ratio of 2.5.
The resulting values of ρy and σy are very close to those in the sticky-price economy.19

Monetary parameters. Following the literature and in particular Schmitt-Grohé and Uribe
(2005), we assume that the elasticity of substitution is εW = 21 across labor types. The wage
adjustment cost is set to ψW = 2100, to obtain a slope of the wage Phillips curve equal 1%. As
in the case of the price Phillips curve, the empirical literature offers a wide range of estimates for
the slope of the wage Phillips curve. We show that this does not change our results in Appendix
I.5.4. The price adjustment cost is set to ψP = 0.

Parameter Description Value Target

χ Scaling param. labor supply 0.061 L = 1/3
ρy Autocorrelation idio. income 0.988 Annual capital-to-GDP ratio of 2.5
σy Standard dev. idio. income 15.4% Gini of wealth of 0.73
κ Price adjustment cost 0 Slope of the price PC 0%
εw Elasticity of sub. labor inputs 21 Schmitt-Grohé and Uribe (2005)
ψw Wage adjustment cost 700 Slope of the wage PC 3%

Table 3: Parameter values in the baseline calibration. We only report the parameter values which
are different from the ones provided in Table 1. See text for descriptions and targets.

19As the labor supply by productivity level is different in the sticky-price and sticky-wage economy, we recalibrate
the idiosyncratic productivity process to match the same targets.
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As in the sticky-price economy, this calibration generates two untargeted outcomes. The
ratio of public debt to annual GDP amounts to 63%, while public spending is equal to 10.7%
of annual GDP. These values are slightly different from the ones in the sticky price economy
because of the different labor supply.

6.4 Quantitative outcomes

We discuss IRFs and second-order moments in Section 6.4.1, while we conduct the welfare analysis
in Section 6.4.2.

6.4.1 Optimal inflation dynamics

Figure 3: IRFs after a negative productivity shock of one standard deviation for relevant variables.
The black line is Economy 1 with optimal monetary policy. The blue dashed line is Economy 2,
with constant wage inflation. The red dashed line is Economy 3, where monetary policy follows
a Taylor rule.

We simulate the model following a negative TFP shock of one standard deviation (the same
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as in Section 5). We also consider three economies, all of which feature the same acyclical fiscal
rules of Section 4.2. Economy 1 corresponds to the benchmark economy with optimal monetary
policy. Economy 2 features wage stability and hence a constant path for wages: ΠW

t = 1 at
all dates. This allows us to quantify the gains from deviating from wage stability, which is the
optimal policy in the representative-agent economy. Economy 3 implements the same Taylor rule
as in Section C.2 instead of the optimal inflation path. In Figure 3 we report the IRFs of several
key variables for the three economies, which all start from the steady state in period 0. Figure 3
shows that the optimal inflation path is close, but not identical, to nominal wage stability (Panel
7). Obviously, because price inflation has now no direct cost, the real wage adjusts through
price inflation, which is now very volatile (Panel 2). The optimal allocation of Economy 1 is
quantitatively close to, though different from, the allocation of Result 1. The Taylor rule of
Economy 3 implies that price inflation markedly differs from the optimal reaction. Consequently,
we observe a sizable deviation from optimal allocation.

6.4.2 Welfare comparison

We now report the average welfare gains by productivity associated with implementing optimal
policies instead of price stability. We use the same methodology as in Section 5.3, where, as
in the price-rigidity case, the benchmark is the optimal monetary-policy case, Economy 1. We
use Economy 2 (no wage inflation) to assess the welfare gain of implementing optimal monetary
policy. Again, the welfare gaps are measured by the percentage increase in consumption. They
are reported in Figure 4 for the different productivity levels. The general shape of the welfare
gains per productivity level is overall similar to the one of Figure 2, obtained in the sticky-price
economy. The welfare gains are heterogeneous across productivity levels and the lower the
productivity level, the higher the welfare gain – even though the average welfare gain is small
and of similar magnitude as in the sticky-price case. The latter amounts to 0.001%.

We have also computed the welfare gaps between the economy with optimal monetary
policy and the one with price stability ΠP = 1. As this last policy is suboptimal even in the
representative-agent economy, the welfare gain of optimal policy over fixed price is substantial
and amounts to 0.06% on average, which is more than one order of magnitude above the one
compared to wage stability.

Finally, we also investigate the robustness of our results to the calibration of the slope of
the wage Phillips curve. We report the optimal wage and price inflation responses associated to
different values of the slope in Appendix I.5.4. Our main finding is unchanged: price inflation
reacts sizably to adjust the nominal wage, while the wage inflation response is comparatively
smaller.
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Figure 4: Welfare gaps between Economy 1 (optimal monetary policy) and Economy 2 with no
wage inflation (ΠW = 1). Values are reported as the percentage increase in consumption (y-axis)
by productivity level (x-axis).

7 Conclusion

We derive optimal monetary policy with commitment in an economy with incomplete insurance
markets and aggregate shocks, considering either sticky prices or sticky wages. Optimal monetary
policy is analyzed under different fiscal regimes. When prices are sticky, we first show theoretically
that price stability is optimal, when linear capital and labor taxes can vary optimally over the
business cycle. We then examine a setting in which taxes are set exogenously according to
fiscal rules. For a standard calibration and empirically relevant fiscal rules, the optimal inflation
response remains modest, although it is sensitive to assumptions about the slope of the Phillips
curve and the distribution of profits. When nominal wages are sticky, price inflation takes on a
new role: it allows the planner to reduce the real wage following a negative supply shock, aligning
it more closely with the marginal productivity of labor. In this case, we find sizable welfare gains
from deviating from price stability. In contrast, the welfare gains from deviating from nominal
wage stability are smaller. Under both types of nominal rigidity, the welfare gains from optimal
monetary policy are higher for low-productivity workers.
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Appendix

A Computing the FOCs of the full-fledged Ramsey program
with flexible prices

This section is organized in two parts. In Section A.1, we transform the Ramsey program by
including the Euler equations in the planner’s objective. In Section A.2, we derive the FOCs of
the Ramsey program in the flexible-price economy.

A.1 Transforming the Ramsey program

We explicitly include the FOCs of the program of the agents (the two Euler equations on
consumption and the FOC on labor) in the planner’s objective. We recall that the three Lagrange
multipliers are denoted by βtλi,k,t for the real Euler equation, βtλi,b,t for the nominal Euler
equation, and βtλi,l,t for the labor Euler equation. The objective of the Ramsey program (22)–(31)
then becomes:

J = E0

∞∑
t=0

βt
ˆ
i
(u(ci,t) − v(li,t))ℓ(di)

− E0

∞∑
t=0

βt
ˆ
i
λi,k,t

(
u′(ci,t) − νi,k,t − βEt

[
(1 + rKt+1)u′(ci,t+1)

])
ℓ(di)

− E0

∞∑
t=0

βt
ˆ
i
λi,b,t

(
u′(ci,t) − νi,b,t − βEt

[
ΠP
t+1u

′(ci,t+1)
])
ℓ(di)

− E0

∞∑
t=0

βt
ˆ
i
λi,l,t

(
v′(li,t) − wtyi,tu

′(ci,t)
)
ℓ(di)

− E0

∞∑
t=0

βtγt

(
ΠP
t (ΠP

t − 1)Yt − ε− 1
κ

(ζt − 1)Yt − βEt
[
ΠP
t+1(ΠP

t+1 − 1)Yt+1
])
.

In the previous expression, we have used the fact that when the credit constraint is binding for
agent i at period t, (νi,k,t > 0), then there is no Euler equation to consider (λi,k,t > 0); in other
words: νi,k,tλi,k,t = νi,b,tλi,b,t = 0, due to the complementary slackness conditions. With γ−1 = 0
(which is a harmless normalization), we obtain after some manipulations:

J = E0

∞∑
t=0

βt
ˆ
i
(u(ci,t) − v(li,t))ℓ(di) − E0

∞∑
t=0

βt
ˆ
i

(
λi,k,t − (1 + rKt )λi,k,t−1

)
u′(ci,t)ℓ(di) (70)

− E0

∞∑
t=0

βt
ˆ
i

(
λi,b,t − RNt

ΠP
t

λi,b,t−1

)
u′(ci,t)ℓ(di) − E0

∞∑
t=0

βt
ˆ
i
λi,l,t

(
v′(li,t) − wtyi,tu

′(ci,t)
)
ℓ(di)

− E0

∞∑
t=0

βt
(

(γt − γt−1)ΠP
t (ΠP

t − 1) − ε− 1
κ

γt(ζt − 1)
)
Yt.
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Using (70), the Ramsey program (22)–(31) can now be expressed as: max J on
(
Bt, Tt,ΠP

t , wt, r
K
t ,

RNt , w̃t, r̃
K
t , R̃

N
t ,Kt, Lt, Yt, ζt, (ci,t, li,t, bi,t, ki,t, νbi,t, νki,t)i

)
t≥0, subject to the same set of constraints,

except the individual Euler equations for consumption (27) and the Phillips curve (30) that have
been included in (70). Note that we could also write the Ramsey program using the sequential
representation (as in equations (15)), but at the cost of tedious notation.

A.2 FOCs for the flexible-price economy

The flexible-price program implies κ = 0, and hence ζt = ΠP
t = 1. Profits are also null. Taking

advantage of the post-tax notation, the allocation is the solution to:

max
(Bt,Tt,wt,rK

t ,R
N
t ,(li,t,bi,t,ki,t)i)

J

ci,t = −ki,t − bi,t + (1 + rKt )ki,t−1 +RNt bi,t−1 + wtyi,tli,t + Tt,

Gt +RNt Bt−1 + rKt Kt−1 + wtLt + Tt = Bt + Yt − δKt−1,

and where we use Kt =
´
i ki,tℓ(di), Bt =

´
i bi,tℓ(di), Lt =

´
i yi,tli,tℓ(di), Yt = ZtK

α
t L

1−α
t , and

with complementary slackness conditions.
The Lagrangian can be expressed as follows:

L = E0

∞∑
t=0

βt
ˆ
i
(u(ci,t) − v(li,t))ℓ(di) − E0

∞∑
t=0

βt
ˆ
i

(
λi,k,t − (1 + rKt )λi,k,t−1

)
u′(ci,t)ℓ(di)

− E0

∞∑
t=0

βt
ˆ
i

(
λi,b,t −RNt λi,b,t−1

)
u′(ci,t)ℓ(di) − E0

∞∑
t=0

βt
ˆ
i
λi,l,t

(
v′(li,t) − wtyi,tu

′(ci,t)
)
ℓ(di)

+ E0

∞∑
t=0

βtµt
(
Bt + Yt − δKt−1 −Gt −RNt Bt−1 − rKt Kt−1 − wtLt − Tt

)
.

Derivative with respect to wt.

0 =
ˆ
i
ψ̂i,tyi,tli,tℓ(di) +

ˆ
i
λi,l,tyi,tu

′(ci,t)ℓ(di).

Derivative with respect to rKt .
ˆ
i
λi,k,t−1u

′(ci,t)ℓ(di) +
ˆ
i
ψ̂i,tki,t−1ℓ(di) = 0.

Derivative with respect to RNt . As in the real case, we have:
ˆ
i
λi,b,t−1u

′(ci,t)ℓ(di) +
ˆ
i
ψ̂i,tbi,t−1ℓ(di) = 0.

Derivative with respect to li,t.
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v′(li,t) + λi,l,tv
′′(li,t) = wtyi,t

(
ψ̂i,t + µt

w̃t
wt

)
.

Derivative with respect to ki,t. For unconstrained agents:

ψ̂i,t = βEt
[
(1 + rKt+1)ψ̂i,t+1

]
+ βEt

[(
r̃Kt+1 − rKt+1

)
µt+1

]
+ βEt

[
(1 + rKt+1)µt+1

]
− µt,

= βEt
[
(1 + rKt+1)ψ̂i,t+1

]
+ βEt

[
(1 + r̃Kt+1)µt+1

]
− µt

while for constrained ones we have ki,t = 0 and λk,i,t = 0.

Derivative with respect to bi,t. For unconstrained agents:

ψ̂i,t = βEt
[
RNt+1ψ̂i,t+1

]
,

while for constrained ones we have bi,t = 0 and λb,i,t = 0.

Derivative with respect to Tt.
ˆ
i
ψ̂i,tℓ(di) ≤ 0, (71)

with an equality when Tt > 0.

B Proof of the equivalence result of Proposition 1

The first step is to simplify the expression of the Ramsey program (22)–(31). Using post-tax
notation, we can remove the taxes τLt , τKt , and τBt from the Ramsey program since they can
be recovered from post-tax and pre-tax rate wt, rKt , and RN , as well as w̃t, r̃Kt , and R̃N using
the relationships (9)–(10). We can also remove the pre-tax nominal rate R̃Nt , as it does not play
any role (only the post-tax rate is determined), and can also be recovered from the allocation.
The before-tax rates w̃t and r̃Kt can also be taken out of the Ramsey program, as they can be
recovered from the allocation and the markup ζt through equations (2) and (5). The profit can
also be removed from planner’s instruments as it does not directly appear in the program and
can be deduced from its definition (8) and the allocation. The second step is to reformulate the
Ramsey program by setting R̂t = RN

t

ΠP
t

. Since the planner chooses both RNt and ΠP
t , this change

of variable has no impact on allocation. The path of (RNt )t can be deduced from the paths of
(ΠP

t )t and (R̂t)t.
We can then write the Ramsey program (without further constraints) as follows:

max
(Bt,Tt,ΠP

t ,wt,rK
t ,R̂t,Kt,Lt,Yt,ζt,(ci,t,li,t,bi,t,ki,t,νb

i,t,ν
k
i,t)i)

t≥0

W0, (72)
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s.t. Gt + R̂tBt−1 + rKt Kt−1 + wtLt + Tt = Bt +
(

1 − κ

2 (ΠP
t − 1)2

)
Yt − δKt−1, (73)

for all i ∈ I: ci,t + ki,t + bi,t = (1 + rKt )ki,t−1 + R̂tbi,t−1 + wtyi,tli,t + Tt, (74)

bi,t ≥ −b̄, νbi,t(bi,t + b̄) = 0, νbi,t ≥ 0, (75)

ki,t ≥ 0, νki,tki,t = 0, νki,t ≥ 0, (76)

u′(ci,t) = βEt
[
(1 + rKt+1)u′(ci,t+1)

]
+ νki,t, (77)

u′(ci,t) = βEt
[
R̂t+1u

′(ci,t+1)
]

+ νbi,t, (78)

v′(li,t) = wtyi,tu
′(ci,t), (79)

Bt =
ˆ
i
bi,tℓ(di), Kt =

ˆ
i
ki,tℓ(di), Lt =

ˆ
i
yi,tli,tℓ(di), Yt = ZtK

α
t−1L

1−α
t , (80)

ΠP
t (ΠP

t − 1) = ε− 1
κ

(ζt − 1) + βEt
[
ΠP
t+1(ΠP

t+1 − 1)Yt+1
Yt

]
. (81)

In the program (72)–(81), the instrument (ζt)t only plays a role in the Phillips curve (81).
The instrument (ζt)t and the Phillips curve as a constraint can be removed from the Ramsey
program and substituted by the constraint βEt

[
|ΠP

t+1(ΠP
t+1 − 1)Yt+1

Yt
|
]
< ∞, which ensures that

the Phillips curve can then used to deduce the path of (ζt)t from the paths of (ΠP
t )t and (Yt)t.

It then follows that the Ramsey program simplifies to the set of equations (72)–(80), without
(ζt)t as instrument. Inflation then only appears in the government budget constraint (73) as a
cost. This makes it clear that any deviation from price stability (i.e., ΠP

t = 1 at all dates) shrinks
the feasible set of the planner and is hence avoided by the planner. This proves Proposition 1.

To see more precisely that the planner refuses any deviation from price stability, assume that
the planner’s optimal allocation is (Bt, Tt,ΠP

t , wt, r
K
t , R̂t,Kt, Lt, Yt, (ci,t, li,t, bi,t, ki,t, νbi,t, νki,t)i)t

and that there is a date t0 in which the planner chooses to deviate from price stability: ΠP
t0 ̸= 1.

Consider the allocation (Bt, T ′
t ,ΠP ′

t , wt, r
K
t , R̂t,Kt, Lt, Yt, ζt, (c′

i,t, li,t, bi,t, ki,t, ν
b
i,t, ν

k
i,t)i)t that is

identical to the initial one, but for the transfer, inflation and individual consumption. We
define for all t ̸= t0: T ′

t = Tt, ΠP ′
t = ΠP

t , and c′
i,t = ci,t and for t0: T ′

t0 = Tt0 + κ
2 (ΠP

t0 − 1)2Yt0 ,
ΠP ′
t0 = 1, and c′

i,t0 = ci,t + κ
2 (ΠP

t0 − 1)2Yt0 > ci,t. In words, the prime allocation is the same as
the non-prime one, except at date t0, where gross inflation has been modified from ΠP

t0 ̸= 1
to 1 and the output destruction κ

2 (ΠP
t0 − 1)2Yt0 that has been avoided has been transferred to

agents via the lump-sum instrument. It is easy to check that the prime allocation is feasible (i.e.,
that it verifies all constraints (73)–(80)) and that it implies a strictly better aggregate welfare
(labor supply is unchanged, consumption at date t0 is strictly higher and consumption at other
dates unchanged). This contradicts that the non-prime allocation is optimal and shows that the
planner never chooses to deviate from price stability when all fiscal instruments are available.

50



C Suboptimal fiscal policy

In this section, we characterize the optimal monetary policy when the fiscal policy follows ad-hoc
rules (Section C.2). We start with estimating the empirically relevant rules (Section C.1).

C.1 Empirical characterization of the tax rate cyclicality.

We characterize here the empirically relevant fiscal rules. We extend the results of Vegh and
Vuletin (2015) and show that labor and capital taxes can indeed be considered to be acyclical
in the United States. We consider fiscal data that covers the period 1960-2023.20 We report in
Table 4 some descriptive statistics about the changes in personal and corporate tax rates in the
US for the period 1960-2023. The first three columns reports the numbers of changes. More
precisely, if (τt)t=0,...,T is our sample of tax rates, a tax change observed at date t = 1, . . . , T
is τt − τt−1 ̸= 0. It is an increase if the difference is positive and a decrease if the difference is
negative. The first two columns thus report the number of such dates in our sample. The last
two columns report the average value of the tax variations τt−τt−1

τt−1
, either over all dates t or only

over all dates t for which there is a tax change.21 The personal tax rate changes 12 times over
the period, which implies that, on average, the tax rate is changed approximately every five
years. Similarly, the corporate income tax changes 10 times over the period, which implies that,
on average, the tax rate is changed every 6 years.

Tax rates Number of changes Value of the change

Increase Decrease Total Mean Mean when ̸= 0

Personal 3 9 12 −1.11 −5.85
Corporate 2 8 10 −0.94 −5.93

Table 4: Descriptive statistics about the changes in personal and corporate tax rates in the
United-States in 1960-2023.

To assess to which extent tax rates vary with the business cycle, we compute the average
percentage change in tax rates in booms and recessions. We follow Vegh and Vuletin (2015) and
define three stances of the business cycle as a function of the quartile of the real GDP cycles,
computed using the Hodrick–Prescott filter. Good times correspond to the years in which the
real GDP cycles belong to the top quartile. Conversely, bad times are the years in which the real
GDP cycles belong to the bottom quartile. Other years with the real GDP cycles in the middle
two quartiles represent normal times. We then compute the percentage changes for personal

20The updated dataset is available on Guillermo Vuletin’s website: https://www.guillermovuletin.com/
datasets. The result holds for both the highest and the average marginal personal income tax rates but we present
here results for the highest marginal personal income tax rate.

21Formally, these two averages correspond to 1
T −1

∑T

t=2
τt−τt−1

τt−1
and 1

Card(Tchange)
∑

t∈Tchange

τt−τt−1
τt−1

,where
Tchange = {t ∈ {2, . . . , T } : τt − τt−1 ̸= 0}.
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and corporate tax rates in the three stances of the business cycle, with respect to the overall
mean percentage change in the sample. Formally, this corresponds to the demeaned average
percentage change in tax rates

(
τt−τt−1
τt−1

− δτ
)

× 100, where δτ is the overall mean tax percentage
change and the date t is restricted to belong to one of the business cycle stance. We report these
values in Table 5. A positive value indicates tax rates that are higher than the average, while
negative values indicate that rates are lower than the average. We can observe that personal and
corporate tax rates are increasing in both good and bad times. This is indicative that these two
tax policies are acyclical.

Personal Corporate

Good times 1.03 1.30
Normal times −1.85 −1.26

Bad times 2.55 1.12

Table 5: Percentage tax rate changes across different stances of the business cycle. Percentage
tax rate changes are expressed as differences from the overall average tax rate.

We also compute the coefficient of correlation between the tax changes and the real GDP
growth rate. More precisely, we compute the coefficient of correlation between ( τt−τt−1

τt−1
)t=2,...,T

and ( GDPt
GDPt−1

)t=2,...,T . We report in Table 6 these correlations and their p-values. The correlations
are very small, close to zero and not significantly different from 0. This confirms our previous
diagnostic that tax rates are acyclical.

Real GDP p-values

Personal −0.025 0.85
Corporate −0.020 0.90

Table 6: Correlations between tax changes and real GDP.

C.2 Program with suboptimal fiscal policy

Because pre- and post-tax rates cannot be set independently, nominal frictions cannot be
suppressed in this setup. We have two additional Lagrange multipliers: βtΥt on the no-arbitrage
condition (43), and βtΓt on the zero-profit condition (42) of the fund. The Lagrange multiplier
on the unique Euler equation is denoted βtλt. Because of exogenous fiscal rules, the planner’s
instruments are: ai,t, li,t, for individual variables and R̃Nt , rt, ΠP

t and ζt for aggregate variables.
Because agents only save in a fund, we also need to redefine the SVL of equation (32) as:

ψi,t := u′(ci,t)︸ ︷︷ ︸
direct effet

− (λi,t − (1 + rt)λi,t−1)u′′(ci,t)︸ ︷︷ ︸
effect on savings

+ λi,l,tyi,twtu
′′(ci,t)︸ ︷︷ ︸

effect on labor supply

. (82)
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Derivative with respect to R̃Nt .

Et

[
(1 − τKt+1) Γt+1

ΠP
t+1

]
Bt = β−1ΥtEt

[
1

ΠP
t+1

]
. (83)

Derivative with respect to ζt.

0 = wt

ˆ
i
yi,t

(
ψi,tli,t + λi,l,tu

′(ci,t)
)
ℓ(di) − wtµtLt (84)

+ ε− 1
κ

ζtγtYt − (r̃Kt + δ)
(
β−1Υt−1 + Γt(1 − τKt )Kt−1

)
.

Derivative with respect to ΠP
t .

0 = µtκ
(
ΠP
t − 1

)
+ (γt − γt−1)(2ΠP

t − 1) +
(
β−1Υt−1 − Γt(1 − τKt )Bt−1

) R̃Nt−1

Yt
(
ΠP
t

)2 . (85)

Derivative with respect to rt.

0 =
ˆ
i

(
ψi,tai,t−1 + λi,t−1u

′(ci,t)
)
ℓ(di) + (Γt − µt)At−1. (86)

Derivative with respect to ai,t. For unconstrained agents:

ψi,t = βEt [(1 + rt+1)ψi,t+1] (87)

+ β
α

Kt
Et

[
wt+1

ˆ
j
yj,t+1

(
ψj,t+1lj,t+1 + λl,j,t+1u

′(cj,t+1)
)
ℓ(dj)

]

− β
α

Kt
Et
[(

(γt+1 − γt)ΠP
t+1(ΠP

t+1 − 1) − ε− 1
κ

γt+1(ζt+1 − 1)
)
Yt+1

]
+ β

α

Kt
Et
[
µt+1

(
Yt+1

(
1 − κ

2 (ΠP
t+1 − 1)2

)
− 1
α

(rt+1 + δ)Kt − wt+1Lt+1

)]
− β

α− 1
Kt

Et
[
(r̃Kt+1 + δ)

(
β−1Υt + Γt+1(1 − τKt+1)Kt

)]
+ βEt

[
Γt+1(rt+1 − (1 − τKt+1)r̃Kt+1)

]
,

while for constrained ones we have ai,t = −ā and λi,t = 0.

Derivative with respect to Tt.
µt ≤

ˆ
j
ψj,tℓ(dj),

with equality if Tt > 0.
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Derivative with respect to li,t.

wt

ˆ
i
ψity

i
tℓ(di) = αwt

ˆ
i
ψity

i
tℓ(di) + v′(Lt)

− εW
ψW

γWt

(
v′(Lt) + Ltv

′′(Lt) − εW − 1
εW

(1 − α)wt
ˆ
i
yi,tu

′(ci,t)ℓ(di)
)

+ (1 − α)µt
Lt

[wtLt − Yt]

+
[
β−1Υt−1 + (1 − τKt )ΓtKt−1

]
(1 − α) r̃

K
t + δ

Lt

+
(
βEt

[
Λt+1ΠW

t+1

]
− ΠP

t Λt
)
α
wt
Lt

D The truncated representation

We derive the planner’s FOCs for truncated economies.

D.1 The aggregation procedure

As explained in Section 2.6, the sequential representation characterizes the equilibrium of the full-
fledged model by sequences of functions depending on the full aggregate and idiosyncratic histories
of agents. Our aggregation procedure involves expressing the model based on so-called truncated
histories, which are N -length vectors h := (y−N+1, . . . , y0) representing agents’ idiosyncratic
histories over the last N periods. The quantity N ≥ 0 is the truncation length. Loosely speaking,
we can represent the truncated history of an agent i whose idiosyncratic history is yt as:

yt = {. . . , yh−N−2, y
h
−N−1, y

h
−N , y

h
−N+1, . . . , y

h
−1, y

h
0︸ ︷︷ ︸

=h

}, (88)

where h is the truncated history, corresponding to the idiosyncratic history over the last N
periods. We now turn to the different steps of the aggregation procedure. We denote by H := YN

the set of all truncated histories.
First, the measure of agents with truncated history h, denoted by Sh, can be computed as:

Sh =
∑
h∈H

Sĥπĥh, (89)

where πĥh is the probability to switch from truncated history ĥ at t− 1 to truncated history h at
t. It is equal to:

πĥh = 1h⪰ĥπyĥ
0 y

h
0
, (90)

and thus to the probability to switch from current productivity level yĥ0 to current state yh0 if h
is a possible continuation of ĥ (denoted by h ⪰ ĥ).
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Second, the model aggregation implies to assign consumption, saving, and labor choices
to groups of agents with the same truncated history. For the sake of simplicity, we will write
truncated history for “the group of agents sharing the same truncated history”. Take the case of
a generic variable, denoted by Xt(yt, zt), where we make the dependence in yt and zt explicit.
The quantity assigned to truncated history h ∈ H is denoted by Xt,h and equal to the average
value of X among agents with truncated history h. Formally:

Xt,h(zt) = 1
St,h

∑
yt∈Yt|(yt

t−N+1,...,y
t
t)=h

Xt(yt,zt)θt(yt), (91)

where θt(yt) is recalled to be the measure of agents with history yt. Definition (91) can be applied
to the average consumption, the end-of-period saving, the labor supply, and the credit-constraint
Lagrange multiplier respectively and lead to the quantities ct,h, at,h, lt,h, and νt,h.

Third, we compute the aggregate beginning-of-period wealth. Applying definition (91) to
date-t beginning-of-period wealth requires to account that agents transit from one truncated
history at t− 1 to another at t. The beginning-of-period wealth ãt,h for truncated history h is:

ãt,h =
∑
ĥ∈H

St−1,ĥ
St,h

πĥhat−1,ĥ. (92)

Fourth, the aggregation of the different equations characterizing the equilibrium is rather
straightforward except for Euler equations – which involve non-linear marginal utilities. Indeed,
the marginal utility of consumption aggregation (u′(ct,h)) is different from the aggregation of
marginal utility (u′

t,h): u′(ct,h) ̸= u′
t,h. The ratio of these two scalars will be denoted by ξt,h,

which guarantees that Euler equations hold with aggregate consumption levels. Similarly, we
denote by ξl,t,h the parameters associated to the labor Euler equation.

D.2 The truncated model

We can now proceed with the aggregation of the full-fledged model. First, the aggregation of
individual budget constraints (45) using equations (91) and (92) yields the following equation:

at,h + ct,h = wty
h
0 lt,h + (1 + rt)ãt,h + Tt, for h ∈ H. (93)

The aggregation of Euler equations for consumption (16) and labor (18) implies for any h ∈ H:

ξhu
′(ct,h) = βEt

[
(1 + rt+1)

∑
h̃⪰h

πhh̃ξh̃u
′(ct+1,h̃)

]
+ νt,h, (94)

ξl,hv
′(lt,h) = wty

h
0 ξhu

′(ct,h). (95)

The system consisting of equations (93)–(95) is an exact aggregation of the full-fledged model
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with aggregate shocks in terms of truncated idiosyncratic histories. This system characterizes
the dynamics of the aggregated variables ct,h, at,h, lt,h and νt,h without any approximation.

Finally, we express market clearing conditions (19) using aggregated variables:

Kt =
∑
h∈H

St,hat,h, Lt =
∑
h∈H

St,hy
h
0 lt,h. (96)

The parameters ξs that appear in the aggregated Euler equations (94) are key in our method.
We both show how to compute them using steady-state allocations and how these computations
can be used to simulate the model in the presence of aggregate shocks.

Steady state and computation of the ξs. At the steady state, the computations of
the parameters ξs can be done based on allocations. Indeed, we can compute the stationary
wealth distribution of the full-fledged model (using the individual equations) and identify credit-
constrained histories. We can then compute aggregate (steady-state) allocations, ch, ah, lh and
νh, using equations (91) and (92). Then, consumption Euler equations (94) and (95) can be
inverted to compute the parameters (ξh)h and (ξl,h)h capturing the within-history heterogeneity
in consumption and labor. Actually, this computation involves only standard linear algebra, and
we provide a closed-form expression for the ξs – see equations (110) and (111) in Appendix D.5.

The truncated model in the presence of aggregate shocks. To use our truncation
method in the presence of aggregate shocks, two further assumptions are needed.

Assumption A We make the following two assumptions.

1. The parameters (ξh)h and (ξl,h)h remain constant and equal to their steady-state values.

2. The set of credit-constrained histories, denoted by C ⊂ H, is time-invariant.

The resulting model (i.e., the aggregated model with Assumption A) is called the truncated
model. We therefore use the ξs twice: (i) once exactly to estimate them using the steady-state
allocation; (ii) once approximately to simulate the model in the presence of aggregate shocks.22

Finally, two properties are worth mentioning. First, by construction of the ξs, the allocations
of the full-fledged Bewley model and of the truncated model coincide with each other at the
steady state. Second, the allocations of the truncated model (in the presence of aggregate shocks)
can be proved to converge to those of the full-fledged equilibrium (and the ξs to 1), when the
truncation length N becomes increasingly long (see LeGrand and Ragot, 2022a). Furthermore,
from a quantitative perspective, Section 5 shows that the ξs are an efficient tool to capture the
heterogeneity within truncated histories, even when the truncation length is not too large.

22Assuming that the ξs are constant in the dynamics is equivalent to assuming that the distribution of agents
within the truncated history is constant. This has the same spirit as assuming that the distribution within bins of
wealth is uniform in the histogram method of Reiter (2009), among others.
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D.3 Ramsey program

Thanks to its finite state-space representation, the truncated model makes it possible to solve the
Ramsey program in the presence of aggregate shocks, which is a challenging task. The Ramsey
program in the truncated economy can be expressed as follows.

max
(wt,rt,r̃K

t ,R̃
N
t ,τ

K
t ,τL

t ,Bt,Tt,Kt,Lt,ΠP
t ,ζt,(at,h,ct,h,lt,h)h)t≥0

E0

∞∑
t=0

βt
∑
h∈H

Shξh(u(ct,h) − v(lt,h))

, (97)

subject to aggregate Euler equations (94) and (95), aggregate budget constraint (93), aggregate
market clearing conditions (96), credit constraints at,h ≥ −ā, as well as constraints that were
already present in the full-fledged Ramsey program: the governmental budget constraint (23),
the Phillips curve (30), the definition (2) of ζt, the one (4) of Yt, the ones (9) and (10) of after-tax
rates rt, rKt , RNt and wt, the zero profit condition for the fund (42), the no-arbitrage constraint
(43), and the relationship (5) between factor prices.

As in Section 2.7, it is possible to use the tools of Marcet and Marimon (2019) to rewrite
the Ramsey program. The truncation adds no complexity to the formulation of the planner’s
objective. FOCs can similarly be derived as in the general case, and we obviously have the same
equivalence results.23

D.4 Program in the economy with sub-optimal fiscal policy

D.4.1 Program formulation

We take advantage of the equivalence result to simplify the program expression, which is:

max
(R̃N

t ,rt,ζt,Bt,(at,h,ct,h,lt,h)h∈H)t≥0
E0

∞∑
t=0

βt
∑
h∈H

[
St,h

(
u(ct,h) − v(lt,h) (98)

−
(
λt,h − λ̃t,h(1 + rt)

)
ξhu

′(ct,h)
)

− λl,t,h
(
ξl,hv

′(lt,h) − wty
h
0 ξhu

′(ct,h)
))]

,

s.t. ct,h + at,h = wty
h
0 lt,h + (1 + rt)ãt,h + Tt, (99)

at,h ≥ 0 and ãt,h =
∑

ỹN ∈YN

πh̃h
St−1,h̃
St,h

at−1,h̃, (100)

λ̃t,h = 1
St,h

∑
h̃∈H

St−1,h̃λt−1,h̃πh̃h, (101)

Kt =
∑
h

St,hat,h −Bt, Lt =
∑
h

St,hy
0
hlt,h, (102)

23A final aspect regarding the truncated Ramsey program is that its solutions can be shown to converge to the
solutions of the full-fledged Ramsey program (if they exist), when the truncation length N becomes infinitely long.
See LeGrand and Ragot (2022a, Proposition 5). This convergence property is the parallel of the convergence result
regarding allocations of the competitive equilibrium.
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and subject to other constraints that are the same as in the individual case (government budget
constraint, Phillips curve, fund no-arbitrage condition, fund zero profit condition, the definitions
of ζ and of profits).

D.4.2 FOCs in the truncated model

We define the net SVL for history h similarly to definition (32):

ψt,h = ξhu
′(ct,h) −

(
λt,h − λ̃t,h(1 + rt)

)
ξhu

′′(ct,h) + λl,hy
h
0wtu

′′(ct,h). (103)

The FOCs with respect to R̃Nt , and ΠP
t are unchanged compared to the individual case.

Derivative with respect to rt.

0 =
∑
h∈H

St,hψt,hãt,h +
∑
h∈H

St,hλ̃t,hξhu
′(ct,h) + (Γt − µt)At−1. (104)

Derivative with respect to ζt.

0 = wt
∑
h∈H

St,hy
h
0
(
lt,hψt,h + λl,t,hu

′(ct,h)
)

− wtµtLt

+ ε− 1
κ

ζtγtYt − (r̃Kt + δ)
(
β−1Υt−1 + Γt(1 − τKt )Kt−1

)
.

Derivative with respect to at,h. For unconstrained truncated histories (i.e., νh = 0):

ψt,h = βEt
[
(1 + rt+1)

∑
h̃∈H

πhh̃ψ̂t+1,h̃

]
+ βEt

[
Γt+1(rt+1 − (1 − τKt+1)r̃Kt+1)

]
(105)

+ β
α

Kt
Et

wt+1
∑
h∈H

St,hy
h
0
(
lt+1,hψt+1,h + λl,t+1,hu

′(ct+1,h)
)
ℓ(dj)


− β

α

Kt
Et
[(

(γt+1 − γt)ΠP
t+1(ΠP

t+1 − 1) − ε− 1
κ

γt+1(ζt+1 − 1)
)
Yt+1

]
+ β

α

Kt
Et
[
µt+1

(
Yt+1

(
1 − κ

2 (ΠP
t+1 − 1)2

)
− 1
α

(rt+1 + δ)Kt − wt+1Lt+1

)]
− β

α− 1
Kt

Et
[
(r̃Kt+1 + δ)

(
β−1Υt + Γt+1(1 − τKt+1)Kt

)]
.

For constrained agents, we have at,h + ā = 0 and λt,h = 0.

Derivative with respect to Tt. ∑
h

St,hψt,h ≤ µt, (106)

with equality when Tt > 0.
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Derivative with respect to lt,h.

ψt,h = 1
wtyh0

v′(lt,h) + λl,t,h
wtyh0

v′′(lt,h) + α
1
Lt

∑
h∈H

St,hy
h
0
(
lt,hψt,h + λl,t,hu

′(ct,h)
)

(107)

+ 1 − α

wtLt

(
µtwtLt + (r̃Kt + δ)

(
β−1Υt−1 + Γt(1 − τKt )Kt−1

))
+ 1 − α

wtLt

(
(γt − γt−1)ΠP

t (ΠP
t − 1) − ε− 1

κ
γt(ζt − 1) − µt

(
1 − κ

2 (ΠP
t − 1)2

))
Yt.

D.5 Matrix representation of the steady-state allocation

We provide here closed-form formulas for the parameters ξs and the Lagrange multipliers, so as
to solve the steady-state model.

As a preliminary, note that at the steady state, we have Z = 1, and the FOCs (83) and (85)
(with respect to R̃Nt and ΠP

t ) imply that ΠP = 1, and using the Phillips curve, ζ = 1.24

The matrix representation consists in stacking together the equations characterizing the
steady-state, so as to provide a convenient matrix notation for solving the steady state. It also
provides an efficient solution to compute the values for the ξs and the Lagrange multiplier. We
recall that there are Ntot truncated histories and we assume that the set of truncated histories is
endowed with a total order that is used for indexing vectors and matrices. In other words, (xh)h
implicitly assumes that all elements xh are collected along a given order that remains identical
from one vector to another.

Let S be the Ntot-vector of steady-state history sizes that is defined as S = (Sh)h. Similarly,
let a, c, and ν be the Ntot-vectors of end-of-period wealth, consumption, credit-constraint
Lagrange multipliers, respectively. These vectors are known from the steady-state equilibrium of
the Bewley model. Denote by I the (Ntot × Ntot)-identity matrix, 1Ntot the (Ntot × 1)-vector
of 1, and Π as the transition matrix across histories. Denoting by ◦ the Hadamard product
and by × or an absence of mathematical sign the usual matrix product, we obtain the following
steady-state relationships:

S = Π⊤S, (108)

S ◦ c+ S ◦ a = (1 + r)Π⊤(S ◦ a) + S ◦W ◦ l, (109)

where (108) is the dynamics of history sizes and (109) is the history of budget constraints.
Euler equations (94) and (95) imply that we are looking for vectors ξu and ξv such that:

ξu ◦ u′(c) = β(1 + r)Π
(
ξu ◦ u′(c)

)
+ ν, (110)

ξv ◦ v′(l) = wξu ◦ y ◦ u′(c), (111)

where the matrix Π⊤ (the transpose of Π) is used to make expectations about next-period
24We remove the t subscript to denote steady-state quantities.
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histories and where u′(c) assumes that the function applies element-wise (and thus denotes
(u′(ch))h). Finally, for any vector x, we denote by Dx the diagonal matrix with x on the diagonal.
We deduce from (110) that ξu is defined by the following closed-form formula:

u′(c) ◦ ξu = (I − β(1 + r)Π)−1ν. (112)

We then use ξv ◦ v′(l) = wξu ◦ y ◦ u′(c) to compute ξv.
We set an initial guess value for µ. We start with the definitions of the λ̃cs and of the ψs of

equations (101) and (103):

S ◦ λ̃c = Π⊤(S ◦ λc), (113)

ψ = ξu ◦ u′(c) −Dξu◦u′′(c)
(
λc − (1 + r)λ̃c − wy ◦ λl

)
. (114)

Combining these two equations yields:

S ◦ψ = S ◦ ξu ◦ u′(c) −Dξu◦u′′(c)
(
I − (1 + r)Π⊤

)
(S ◦ λc) +Dwy◦ξu◦u′′(c)(S ◦ λl), (115)

where ◦ is commutative and for any vectors x and y: x ◦ y = Dxy and DxDy = Dx◦y.
We also denote: ξ̃vh = ξv

h

yh
0

. The FOC (107) for labor becomes:

S ◦ψ = 1
w
S ◦ ξ̃v ◦ v′(l) + 1

w
ξ̃
v ◦ v′′(l) ◦ (S ◦ λl)

+ (α− 1)r + (1 − τK)δ
wL

(
Sã⊤(S ◦ψ) + S(ξu ◦ u′(c))⊤(S ◦ λ̃c)

)
+ α

1
L

(
S(y ◦ l)⊤(S ◦ψ) + S(y ◦ ξu ◦ u′(c))⊤(S ◦ λ̃l)

)
− µ

wL
(1 − α)

(
Y − (r + (1 − τK)δ)A− wL

)
S.

Denoting M0 = wLI − (α− 1)(r + (1 − τK)δ)Sã⊤ − αwS(y ◦ l)⊤, we have:

M0S ◦ψ = (α− 1)(r + (1 − τK)δ)(S(ξu ◦ u′(c))⊤Π⊤)(S ◦ λc) (116)

+ (DLξ̃
v◦v′′(l) + αw(S(y ◦ ξu ◦ u′(c))⊤Π⊤))(S ◦ λl)

+ LS ◦ ω ◦ ξ̃v ◦ v′(l) − µ(1 − α)
(
Y − (r + (1 − τK)δ)A− wL

)
S,

where it should be observed that S(ξu ◦ u′(c))⊤Π⊤ has the dimension (Ntot × 1) · (1 ×Ntot) ·
(Ntot×Ntot) = (Ntot×Ntot) and is a matrix. Similarly, S(ξu ◦u′(c)◦y)⊤Π⊤, Sã⊤, and S(y ◦ l)⊤

also have the dimension (Ntot × 1) · (1 ×Ntot) = (Ntot ×Ntot) and are matrices.
Using (115): S◦ψ = ω◦S◦ξu◦u′(c)−Dξu◦u′′(c)

(
I − (1 + r)Π⊤

)
(S◦λc)+Dwy◦ξu◦u′′(c)(S◦

λl), we deduce:

S ◦ λc = L0(S ◦ λl) + x0, (117)
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where: L̃0 = M0Dξu◦u′′(c)
(
I − (1 + r)Π⊤

)
+ (α− 1)(r + (1 − τK)δ)S(ξu ◦ u′(c))⊤Π⊤,

L0 = L̃
−1
0 (M0Dwy◦ξu◦u′′(c) −DLξ̃

v◦v′′(l) − αw(S(y ◦ ξu ◦ u′(c))⊤Π⊤)),

x0 = L̃
−1
0

(
M0ω ◦ S ◦ ξu ◦ u′(c) − LS ◦ ω ◦ ξ̃v ◦ v′(l)

+µ(1 − α)
(
Y − (r + (1 − τK)δ)A− wL

)
S
)
.

We now turn to the Euler-like equation (105) that holds only for unconstrained histories. We
introduce the matrix Πψ defined for any vector x as:

Πψ(S ◦ x) = S ◦ (Πx), (118)

and the matrix P , which is the matrix with one on the diagonal if the history is unconstrained
and 0 otherwise. With this notation, equation (105) becomes:

P (S ◦ψ) = β(1 + r)PΠψ(S ◦ψ) (119)

+ β

K
(α− 1)(r + (1 − τK)δ)P

(
Sã⊤(S ◦ψ) + S(ξu ◦ u′(c))⊤(S ◦ λ̃c)

)
+ β

K
αwP

(
S(y ◦ l)⊤(S ◦ψ) + S(y ◦ ξu ◦ u′(c))⊤(S ◦ λ̃l)

)
+ β

K
Pµ

(
αY − (α− 1)(r + (1 − τK)δ)A− (r + δ)K − αwL

)
S.

Denoting: L̃1 = I − β(1 + r)Πψ − β
K (α− 1)(r+ (1 − τK)δ)Sã⊤ − β

KαwS(y ◦ l)⊤, equation (119)
becomes:

PL̃1(S ◦ψ) = β

K
(α− 1)(r + (1 − τK)δ)PS(ξu ◦ u′(c))⊤Π⊤(S ◦ λc)

+ β

K
αwPS(y ◦ ξu ◦ u′(c))⊤Π⊤(S ◦ λl)

+ β

K
Pµ

(
αY − (α− 1)(r + (1 − τK)δ)A− (r + δ)K − αwL

)
S.

Using (115) to express S ◦ψ, we obtain:

PL1,c(S ◦ λc) = PL1,l(S ◦ λl) + Px1, (120)

where: L̃1 = I − β(1 + r)Πψ − β

K
(α− 1)(r + (1 − τK)δ)Sã⊤ − β

K
αwS(y ◦ l)⊤,

L1,c = L̃1Dξu◦u′′(c)
(
I − (1 + r)Π⊤

)
+ β

K
(α− 1)(r + δ)S(ξu ◦ u′(c))⊤Π⊤,

L1,l = L̃1Dwy◦ξu◦u′′(c) − β

K
αwS(y ◦ ξu ◦ u′(c))⊤Π⊤,

x1 = L̃1ω ◦ S ◦ ξu ◦ u′(c)

− β

K
µ
(
αY − (α− 1)(r + (1 − τK)δ)A− (r + δ)K − αwL

)
S.
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We also have for unconstrained agents: (I − P )(S ◦ λc) = 0, which yields with (120):

S ◦ λc = L2(S ◦ λl) + x2, (121)

where: L2 = (I − P + PL1,c)−1PL1,l,

x2 = (I − P + PL1,c)−1Px1.

Combining (117) and (121), we obtain:

S ◦ λl = −(L0 −L2)−1(x0 − x2),

S ◦ λc = x2 −L2(L2 −L0)−1(x2 − x0),

and we deduce:

S ◦ψ = S ◦ ξu ◦ u′(c) −Dξu◦u′′(c)
(
I − (1 + r)Π⊤

)
x2 +Dwy◦ξu◦u′′(c)(S ◦ λl), (122)

+ (Dξu◦u′′(c)
(
I − (1 + r)Π⊤

)
−Dwy◦ξu◦u′′(c))(L0 −L2)−1(x0 − x2).

It remains to iterate on µ until FOC (106) holds, or: µ = 1⊤(S ◦ψ).
We then compute the steady-state value of other Lagrange multipliers using the FOCs (83),

(84), and (104):

Γ = µ− 1
S⊤a

(
ã⊤(S ◦ψ) + (ξu ◦ u′(c))⊤(S ◦ λc)

)
,

Υ = β(1 − τK)ΓB,
ε− 1
κ

γY = (r̃K + δ)
(
β−1Υ + Γt(1 − τK)K

)
+ wµL

− w(y ◦ l)⊤(S ◦ψ) − w(y ◦ u′(c))⊤(S ◦ λl).

D.6 Second-order moments

The second-order moments of the three economies discussed in Section 5.2 are presented in
Table 7. We simulate the economy considering the TFP process given in Table 1. We report the
unconditional first- and second-order moments for the main variables, in the three economies. For
each variable, we report the steady-state value (labeled “Mean”) and the normalized standard
deviation in percent, equal to the standard deviation divided by the mean (labeled “Normalized
std deviation”), except for taxes and inflation, for which the standard deviation is reported.
The second part of the table reports correlations. We can observe that Table 7 confirms the
IRFs regarding aggregate variables. The volatility of aggregate consumption is slightly lower in
Economy 1 than in Economies 2 and 3.
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Variables Mean Normalized std deviation (%)
Economy 1 Economy 2 Economy 3

Y 1.431 1.480 1.481 1.539
C 0.900 1.338 1.343 1.373
K 14.311 1.547 1.548 1.635
L 0.392 0.221 0.174 0.234
R̃N 1.011 0.054 0.033 0.101
r 0.007 0.025 0.022 0.025
B 3.637 0.619 0.619 0.613
T 0.114 4.705 6.045 5.427

ΠP 1.000 0.020 0.000 0.067
ΠW 1.000 0.449 0.285 0.359

Correlations

corr(ΠP , Y ) 0.204 0.00 0.113
corr(ΠW , Y ) 0.125 0.157 0.157
corr(B, Y ) −0.971 −0.972 −0.976
corr(C, Y ) 0.949 0.943 0.934
corr(Y, Y−1) 0.979 0.967 0.967
corr(B,B−1) 0.960 0.966 0.966

Table 7: First- and second-order moments for key variables in the three economies (Economy 1
is the benchmark; Economy 2 is the economy with constant inflation; Economy 3 is the economy
with the Taylor rule).

D.7 A robustness check: The refined truncation

D.7.1 The refinement method

The refinement method, developed in LeGrand and Ragot (2022b) for 2 idiosyncratic states,
consists in considering truncated histories of unequal length, instead of truncated histories of
the same length N , as in Section D. The idea is that some histories that are particularly large
or heterogeneous would benefit from longer length. For example, with two idiosyncratic states
(corresponding to high productivity y2 and to low productivity y1), the set of truncated histories
of length 2 is {(y2, y2), (y2, y1), (y1, y2), (y1, y1)}, where (y2, y2) and (y1, y1) are typically the two
largest truncated histories, since productivity is persistent. In that case, the refinement method
allows one to split these larger histories, without affecting the smaller histories (y2, y1), and
(y1, y2). For instance, the history (y2, y2) can be refined into (y2, y2, y2) and (y1, y2, y2), such
that the set of truncated histories is now {(y2, y2, y2), (y1, y2, y2), (y2, y1), (y1, y2), (y1, y1)}. It can
be checked that: (i) this set corresponds to a proper partition of idiosyncratic histories (every
infinite history admits a unique truncated representation in the set) and (ii) the transition matrix
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between set histories is well-defined.25

We extent the refinement method of LeGrand and Ragot (2022b) to k := Card(Y) idiosyn-
cratic states. We denote a set of refined truncated histories by R(N, (Ni)i=1,...,k), where N is
the uniform truncation length (on which the refinement is based), and Ni ≥ N is the longest
refinement history for the state i. The construction is recursive and follows the same steps as the
above example. It starts from the set R(N, (N)i=1,...,k) of uniform truncated histories that are all
of length N . The first refinement step consists in substituting for the history yN1 = (y1, . . . , y1︸ ︷︷ ︸

N

),

the set of histories {(yi, y1, . . . , y1︸ ︷︷ ︸
N

) : i = 1, . . . , k}. This yields the set R(N,N + 1, (Ni)i=2,...,k)

of size kN + k − 1. The second step consists in refining the history yN+1
1 = (y1, . . . , y1︸ ︷︷ ︸

N+1

) into

{(yi, y1, . . . , y1︸ ︷︷ ︸
N+1

) : i = 1, . . . , k}, which gives the set R(N,N + 2, (Ni)i=2,...,k), which is of size

kN + 2(k − 1). These steps are repeated until we obtain R(N,N1, (Ni)i=2,...,k), which is of size
kN + (N1 −N)(k− 1). Furthermore, this set implies a well-defined mapping between infinite and
truncated histories, as well as a well-defined transition probability matrix. The same method
can be applied to any other history of the form yNi = (yi, . . . , yi︸ ︷︷ ︸

N

) with i = 2, . . . , k. This finally

generates the set R(N, (Ni)i=1,...,k), with kN + (k − 1)
∑k
i=1(Ni −N) elements.

The truncation method can then be used as in the uniform case of Section D. Equations
characterizing the Ramsey allocation in Section D.4 and the matrix representation of Section
D.5 remain valid once the proper transition matrix has been computed (see equation (90)).

D.7.2 Quantitative application to the model of Section 5

We consider a refined truncation based on a uniform truncation with N = 5. We then consider a
common refinement length of 20 periods for all constant histories (hence, a set R(5, (20)i=1,...,7)
with the notation of the previous section). The number of truncated histories with positive
size increases to 907 from 727 with the uniform truncation method. We report in Table 8 the
second-order moments associated to the simulation of Economies 1 and 2 of Section 5.2 using
the refined truncation method. As can be seen from the comparison with Table 7, the differences
with the uniform truncation method are small, of the order of magnitude of 10−4. This is due to
the better accuracy of the refined truncation method. In any case, the results on the volatility of
both price and wage inflation are quantitatively similar.

25The last point does not hold in general. Indeed, {(y2, y2), (y2, y1, y2), (y1, y1, y2), (y1)} corresponds to the
refinement of {(y2, y2), (y1, y2), (y1)} (through (y1, y2)) but does not yield a well-defined transition matrix.
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Variables Mean Normalized std deviation (%)
Economy 1 Economy 2

Y 1.431 1.499 1.499
C 0.900 1.340 1.343
K 14.311 1.600 1.599
L 0.392 0.223 0.180
R̃N 1.011 0.054 0.034
r 0.007 0.025 0.023
B 3.637 0.619 0.62
T 0.114 4.785 6.079

ΠP 1.00 0.020 0.000
ΠW 1.00 0.426 0.285

Correlations

corr(ΠP , Y ) 0.206 0.000
corr(ΠW , Y ) 0.127 0.154
corr(B, Y ) −0.971 −0.971
corr(C, Y ) 0.945 0.94
corr(Y, Y−1) 0.979 0.968
corr(B,B−1) 0.960 0.966

Table 8: Refined truncation (20 periods). First- and second-order moments for key variables,
in the two economies (Economy 1 features acyclical fiscal rule and optimal monetary policy;
Economy 2 features acyclical fiscal rule and constant inflation).

D.8 A robustness check: Cyclical tax rates

We investigate the robustness of our quantitative results of Section 5 to a modification of our
fiscal rules. We relax the assumption of constant marginal rate and assume that our fiscal policy
is determined by the rule of equation (52), and by the two following rules:

τLt = τL∗ − σL1 (Zt − Z∗) − σL2 (Zt−1 − Z∗), (123)

τKt = τK∗ − σK1 (Zt − Z∗) − σK2 (Zt−1 − Z∗), (124)

instead of the rules of equations (50)–(51). We calibrate this fiscal rule by setting the six
parameters (σL1 , σL2 , σK1 , σK2 , σT , σB) = (−0.6, 0.5, 0.6,−0.5, 8.5, 4.0). The calibration is such that
labor taxes fall in recessions, whereas capital tax increases. This rule implements a similar debt
path to our benchmark rule, because the reduction on labor tax is compensated by an increase
in capital taxes. However, compared to our benchmark acyclical rule, this rule implies different
insurance properties against the aggregate risk. We call the economy with this cyclical fiscal rule
and optimal monetary policy “Economy 4”.

As in Section 5 of the main text, we simulate the model after a negative TFP shock of one
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Variables Mean Normalized std deviation (%)
Economy 1 Economy 4

Y 1.431 1.480 1.443
C 0.900 1.338 1.310
K 14.311 1.547 1.501
L 0.392 0.221 0.194
R̃N 1.011 0.054 0.051
r 0.007 0.025 0.024
B 3.637 0.619 0.621
T 0.114 4.705 5.191

ΠP 1.000 0.020 0.019
ΠW 1.000 0.449 0.433

Correlations

corr(ΠP , Y ) 0.204 0.215
corr(ΠW , Y ) 0.125 0.124
corr(B, Y ) −0.971 −0.972
corr(C, Y ) 0.949 0.949
corr(Y, Y−1) 0.979 0.980
corr(B,B−1) 0.960 0.961
corr(τL, Y ) 0.000 0.507
corr(τK , Y ) 0.000 −0.507

Table 9: First- and second-order moments for key variables, in Economy 1 (acyclical fiscal policy)
and Economy 4 (time-varying fiscal policy).

standard deviation. We compare the outcomes of Economies 1 and 4. As a reminder, Economy
1 is defined in Section 5.2 and features acyclical fiscal policy and optimal monetary policy.
Second-order moments are reported in Table 9. We do not report the IRFs, which are very
similar in the two economies. Second-order moments show that a mildly counter-cyclical tax
system contributes to reduce the volatility of optimal inflation and of other aggregate variables
and thus that time-varying fiscal policy provides some insurance against aggregate shocks.

E Relationship with the literature: Theoretical and quantitative
investigations

E.1 Role of the slope of the Phillips curve

We verify that our results are robust to reasonable variations in the slope of the Phillips curve.
Indeed, if there is a strong consensus about the positivity of the slope, empirical estimates are
less conclusive about its precise value. To address potential concerns regarding the influence of
this value on our result, we consider a wide variety of values for the slope that correspond to the
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various estimates that can be found in the literature. More precisely, we consider the following
values, with between brackets the corresponding reference: 0.62% (Hazell et al., 2022), 1.9%
(Rotemberg and Woodford, 1997), 5% (our benchmark), 8.5% (Galí, 2015), 23% (Barnichon and
Geert, 2020). In the Calvo models, these slopes imply the following average price durations, in
quarters: 14.0, 8.0, 5.1, 4.0, and 2.7. These different values of the slope then imply different
values for the cost of inflation κ, since the slope in the Rotemberg model is given by (ε−1)/κ and
since we consider the same elasticity ε = 6 as in the baseline case. We simulate the model with
these different values of κ, while keeping the rest of the calibration identical to the benchmark
one, given in Table 1. In Figure 5, we report quarterly wage and price inflation (in %) after
a negative TFP shock (the y-axis of the two plots have different scales). We find that price
inflation increases at most to 0.04% after a shock. On the opposite, wage inflation varies sizably
and allows the real wage to get closer to the marginal productivity of labor.

Figure 5: IRFs in percentage points after a negative productivity shock. Quarterly wage inflation
(left-hand side) and price inflation (right-hand side) are given in percentage point. The different
curves correspond to different values of the slope of the Phillips curve given in the legend.

E.2 A two-agent economy

We consider a simplified version of the quantitative model of Section 4, with a modification of
the way profits are distributed. We remove capital and assume that there are two productivity
levels y2 > y1 > 0 with an equal mass 1/2 of agents at each productivity level. Agents are also
assumed to inelastically supply one unit of labor and to trade only nominal assets. Productivity
levels are assumed to be chosen for the aggregate labor supply to be equal to 1: y1+y2

2 = 1 and
the transition matrix (πij) is symmetric. There is no government (hence, no public spending, no
tax, and no public debt). Nominal assets are thus in zero-net supply.
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The firms’ profits, Ωt, are not taxed, but are distributed to households as a function of their
productivity. More precisely, agents of type i receive a share of profits Ωt equal to (y

ν
1 +yν

2
2 )−1yνi ,

where ν ≥ 0 characterizes how unequal the profit distribution is (note that shares sum to 1).
When ν = 0, all agents receive the same share of total profits, and the higher ν, the more the
profit distribution is tilted toward high-productivity agents. At the limit (ν → ∞), all profits
are distributed to the highest-productivity agents only.26

Furthermore, this simple economy is characterized by a specific risk-sharing arrangement,
which corresponds to the “island” metaphor.27 Agents with the same productivity level pool
resources and consume the same amount, as if they were on the same island. Agents move across
the two islands (corresponding to the two productivity levels) according to their productivity
status. Formally, this economy is similar to a truncated model in which the truncation length is
set equal to one and the ξs are all set to one. The equilibrium has indeed a simple structure
with two agents (with high and low productivity), which allows us to easily derive the optimal
policy with standard methods.

E.2.1 The model without capital

Because of the risk sharing arrangement, the after-pooling wealth on island i at date t, denoted
ãi,t, can be expressed as function of the end-of-period wealth, ai,t, as ã1,t = π11a1,t + π21a2,t and
ã2,t = π12a1,t+π22a2,t. Using a guess-and-verify strategy, we assume that type-1 agents are credit-
constrained: a1,t = −ā at all dates. We will later provide the conditions for this to be the case.
As assets are in zero net-supply, the end-of-period market clearing is: a1,t + a2,t = 0. We deduce
a1,t = −a2,t = −ā and ã1,t = −ã2,t = −(π11−π21)ā. In the absence of capital (α = 0) and because
of the normalization of the labor supply, the production sector is Yt = Zt, and we deduce from
Section 2.3 the following expression for profits: Ωt = (1−wt

Zt
− κ

2 (ΠP
t −1)2)ZtLt, where we used ζt =

wt/Zt. The price Phillips curve becomes: ΠP
t (ΠP

t − 1) = ε−1
κ (wt

Zt
− 1) + βEt

[
ΠP
t+1(ΠP

t+1 − 1)Yt+1
Yt

]
.

The individual budget constraints on the two islands can be expressed as follows (i = 1, 2):
ai + ci,t = RN

t−1
ΠP

t
ãi + wyi + yν

i
Ψ Ωt, with Ψ = 1

2(yν1 + yν2 ). As the family head in each island cares
equally about their island members, the two Euler equations can be written as:

u′(c1,t) > βEt
RNt

ΠP
t+1

(
π11u

′(c1,t+1) + π12u
′(c2,t+1)

)
, (125)

u′(c2,t) = βEt
RNt

ΠP
t+1

(
π21u

′(c1,t+1) + π22u
′(c2,t+1)

)
.

26This flexible form allows one to encompass the case where profits are equally distributed to households (Acharya
et al., 2023) and the case of an exogenous (unequal) distribution (Bhandari et al., 2021) without introducing
another asset.

27The simple island metaphor is used by Lucas (1990), the family metaphor is also used in Challe et al. (2017)
and Bilbiie and Ragot (2021) or Bilbiie (2024). See Ragot (2018) for an overview of limited-heterogeneity models.
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The first Euler equation has to be a strict inequality for credit constraints to bind for type-1
agents. Using a utilitarian welfare function, the Ramsey program can be written as:

max
(c1,t,c2,t,wt,RN

t ,ΠP
t )

t≥0

1
2E0

∞∑
t=0

βt(u(c1,t) + u(c2,t)),

s.t. c1,t =
RNt−1
ΠP
t

ã1 − a1 + wty1 + yν1
Ψ

(
1 − wt

Zt
− κ

2
(
ΠP
t − 1

)
2
)
Zt,

c2,t =
RNt−1
ΠP
t

ã2 − a2 + wty2 + yν2
Ψ

(
1 − wt

Zt
− κ

2
(
ΠP
t − 1

)
2
)
Zt,

u′(c2,t) = βEt
RNt

ΠP
t+1

(
π21u

′(c1,t+1) + π22u
′(c2,t+1)

)
,

ΠP
t (ΠP

t − 1)Zt = ε− 1
κ

(wt
Zt

− 1)Zt + βEt
[
ΠP
t+1(ΠP

t+1 − 1)Zt+1

]
.

Denoting by λ2,t the Lagrange multiplier on the Euler equation of agents 2, and by γt the
Lagrange multiplier on the Phillips curve, the Lagrangian associated to the Ramsey program is:

L = E0

∞∑
t=0

βt
[
(u(c1,t) + u(c2,t)) − (γt − γt−1)ΠP

t (ΠP
t − 1)Zt + ε− 1

κ
γt(

wt
Zt

− 1)Zt, (126)

−
(
λ2,t −

RNt−1
ΠP
t

π22λ2,t−1

)
u′(c2,t) −

(
0 −

RNt−1
ΠP
t

π21λ2,t−1

)
u′(c1,t)

]
,

with λ2,−1 = 0. We denote by λ̃1,t = π21λ2,t−1 and λ̃2,t = π22λ2,t−1 the beginning-of-period
Lagrange multipliers in each state.

The FOC with respect to ΠP
t is:

0 =
(
ψ1,t

yν1
Ψ

+ ψ2,t
yν2
Ψ

)
κ(ΠP

t − 1)Zt +
RNt−1(
ΠP
t

)2 (ψ1,tã1,t + ψ2,tã2,t + λ̃1,tu
′(c1,t) + λ̃2,tu

′(c2,t)
)

+ (γt − γt−1)(2ΠP
t − 1)Zt. (127)

The FOC with respect to RNt is:

0 = βEt
1

ΠP
t+1

(
ψ1,t+1ã1 + ψ2,t+1ã2 + λ̃1,t+1u

′(c1,t+1) + λ̃2,t+1u
′(c2,t+1)

)
. (128)

The FOC with respect to wt is: 0 =
(
y1 − yν

1
Ψ

)
ψ1,t +

(
y2 − yν

2
Ψ

)
ψ2,t + ε−1

κ γt.
We deduce from equations (127) and (128) that the steady-state allocation implies ΠP = 1.

We can then compute the steady-state allocation and then deduce the steady-state values of
Lagrange multipliers from previous equations. We also check that type-1 agents are indeed
credit-constrained in equilibrium, i.e., that inequality (125) holds. The model after a TFP shock
can then be simulated using a first-order perturbation of the model equations.
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E.2.2 Quantitative assessment in the model without capital

The model calibration is close to the one of Bhandari et al. (2021). The period is a year (unlike
in the rest of the paper). The preference parameters are set to β = 0.96 for the discount factor
and to σ = 2 for the inverse of the intertemporal elasticity of substitution. The parameters
characterizing the Phillips curve are set to ε = 6 (to have a markup of 20%) and to κ = 20, which
generates a slope of the Phillips curve equal to 6%. The productivity process is based on an AR(1)
process with a persistence of ρθ = 0.992 and a standard deviation of the innovation of σθ = 10.3%.
Using the Rouwenhorst (1995) procedure, we obtain the two productivity levels y1 = 0.11 and
y2 = 0.89 and a transition matrix defined by π11 = π22 = 0.996 and π12 = π21 = 1 − π11. We set
the parameter driving the inequality of profits distribution to ν = 10. This high value implies
that the high-productivity agents get almost all the profits.28 Finally, we set the credit constraint
to ā = 0.05, which is half of the yearly income of low-productivity agents. This value implies that
low-productivity agents are credit constrained in equilibrium. We solve for the optimal monetary
policy after a negative TFP shock of 1%,with a persistence of ρz = 0.73, as in Bhandari et al.
(2021).

As summary statistics, we report in Panel A of Figure 6 the inflation rate in percent and the
consumption of agents 1 and 2, both in percentage deviation from their steady-state value. To
understand the optimal allocation, we report the optimal response in black solid lines, and in
blue dashed lines, the response with a constant inflation rate ΠP = 1, which corresponds to the
optimal inflation rate in a representative-agent economy. The inflation increases at impact by
around 0.17%, which is consistent with Bhandari et al. (2021). The increase in inflation benefits
to low-productivity agents (agents 1) due to the Fisher effect and to the increase in the real wage.
Agents 2 experience a slightly higher fall in consumption due to inflation. Overall, inflation acts
as risk-sharing device for the aggregate TFP shock.

Parameter value Description Inflation on impact (in%)

Benchmark 0.17
κ = 100 Price adj. cost 0.11
σ = 1 IES 0.07
ā = 0.1 Credit limit 0.14
ν = 0 lump-sum profit red. −0.13

Table 10: Change in inflation on impact for different parameter values.

We conduct sensitivity analysis and report in Table 10 the increase in inflation at the time
of impact for different parameter choices (the shape of the inflation response being mostly
unchanged). The variation of the first inflation driver cost (κ increasing from 20 to 100) implies a

28The share of profits held by the type-1 agents is around 8 · 10−10. A similar assumption is made in a number
of papers (Challe et al., 2017, or Tobias et al., 2020, and see the discussion in Bilbiie, 2024).
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A. Economy without capital

B. Economy with capital and fiscal system

Figure 6: Optimal inflation rate in percentage point and consumption levels of the two types of
agents in percentage deviation, for two economies. The black solid line is the optimal allocation.
The blue dashed line is the allocation when ΠP = 1, which is the optimal inflation in the
corresponding representative-agent economy.

decrease in the slope of the Phillips curve from 6% to the value of 2%. The increase in inflation on
impact diminishes from 0.17% to 0.1%, consistent with a higher cost for inflation. With a higher
IES (equal to 1/σ), the welfare benefit of consumption smoothing is reduced, which implies a
lower increase in inflation, by 0.07% instead of 0.17%. A higher credit limit increases the nominal
outstanding debt of agents 1, which serve as a “fiscal” base of inflation. Finally, when the profits
are equally distributed across agents (which corresponds to ν = 0), inflation decreases on impact
by −0.13% instead of increasing by 0.17%. Indeed, decreasing inflation allows the planner to
increase firms’ profits. Since the profits are equally distributed, this acts as a progressive transfer
to type-1 agents (who are credit-constrained), which boosts their consumption. The sensitivity
in a heterogeneous-agent economy of optimal inflation to profits distribution has already been
documented (Tobias et al., 2020; Bhandari et al., 2021; Bilbiie and Ragot, 2021; Acharya et al.,
2023; or Bilbiie, 2024).
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E.2.3 Capital and taxes in the simple model

We consider the program with capital and exogenous taxes (possibly null). The production
function is now Yt = ZtK

α
t , as labor is still normalized to Lt = 1. Again, we guess-and-verify that

agents 2 hold the capital stock, while agents 1 are credit-constrained. The pooling mechanism
on islands now concerns both nominal and real assets.

The government finances a lump-sum transfer Tt by raising a distorting capital tax, τKt , which
can be time-varying. The post-tax gross real return on nominal bonds is 1 + (1 − τKt )( R̃

N
t−1

ΠP
t

− 1),
while the post-tax gross real return on capital is 1 + (1 − τKt )r̃Kt , where, as in Section 2, r̃Kt
stands for the before-tax real interest rate on capital. The governmental budget constraint is:

Tt = τKt

(
r̃Kt Kt−1 +

(
R̃Nt−1
ΠP
t

− 1
)

(ã1 + ã2)
)
, (129)

where ã1 + ã2 = 0, because nominal assets are in zero net-supply. The two budget constraints
and the nominal and real Euler equations can be expressed as follows:

− ā+ c1,t =
(
1 + (1 − τKt )(

R̃Nt−1
ΠP
t

− 1)
)
ã1 + (1 + (1 − τKt )r̃Kt )K̃1,t + wty1 + yν1

Ψ
Ωt + Tt,

ā+Kt + c2,t =
(
1 + (1 − τKt )(

R̃Nt−1
ΠP
t

− 1)
)
ã2 + (1 + (1 − τKt )r̃Kt )K̃2,t + wty2 + yν2

Ψ
Ω + Tt,

u′(c2,t) = βEt
(
1 + (1 − τKt+1)( R̃

N
t

ΠP
t+1

− 1)
) (
π21u

′(c1,t+1) + π22u
′(c2,t+1)

)
,

u′(c2,t) = βEt(1 + (1 − τKt+1)r̃Kt+1)
(
π21u

′(c1,t+1) + π22u
′(c2,t+1)

)
,

with the pooling expressions: K̃1,t = π21Kt−1 and K̃2,t = π22Kt−1. The Phillips curve is still given
by (7). We denote by λk,2,t the Lagrange multiplier on the Euler equation for capital, and by λb,2,t
the Lagrange multiplier on the Euler equation for the nominal asset. The beginning-of-period
values of Lagrange multipliers on capital are λ̃k,i,t = π2,iλk,2,t, for i = 1, 2.

The Lagrange multiplier on the definition of ζ is Υt, and the one on the governmental budget
constraint (129) is µt. The FOCs associated to the Ramsey program can now be easily derived.

Derivative with respect to R̃Nt .

0 = Et
1 − τKt+1

ΠP
t+1

[(
ψ1
t+1ã1 + ψ2

t+1ã2
)

+ λ̃b,2,t+1u
′(c2,t+1) + λ̃b,1,t+1u

′(c1,t+1)
]
.

Derivative with respect to r̃Kt .

0 =(ψ1,tK̃1,t + ψ2,tK̃2,t + λ̃K1,tu
′(c1,t) + λ̃K2,tu

′(c2,t))(1 − τKt )(r̃Kt + δ)

+
(
ε− 1
κ

γt − µPt

)
αζtZtK

α
t−1 − (1 − α)Υtζt + (r̃Kt + δ)µtτKKt−1.
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Derivative with respect to wt.

0 = (y1ψ1,t + y1ψ2,t)wt +
(
ε− 1
κ

γt − (y
ν
1
Ψ
ψ1,t + yν2

Ψ
ψ2,t)

)
(1 − α)ζtZtKα

t−1 + (1 − α)ζtΥt.

Derivative with respect to ΠP
t .

0 = (1 − τKt )
R̃Nt−1(
ΠP
t

)2 (ψ1,tã
1 + ψ2,tã

2 + λ̃b,1,tu
′(c1,t) + λ̃b,2,tu

′(c2,t)
)

+ (γt − γt−1)(2ΠP
t − 1)ZtKα

t−1 +
(
yν1
Ψ
ψ1,t + yν2

Ψ
ψ2,t

)
κ(ΠP

t − 1)ZtKα
t−1.

Derivative with respect to Tt.
µt = ψ1,t + ψ2,t.

Derivative with respect to Kt.

ψ2,t = βEt(1 + (1 − τKt+1)r̃Kt+1) (π22ψ2,t+1 + π21ψ1,t+1)

− αβEt
[
(γt+1 − γt)ΠP

t+1(ΠP
t+1 − 1) − ε− 1

κ
γt+1(ζt+1 − 1)

]
Zt+1K

α−1
t

+ αβEt
(
yν1
Ψ
ψ1,t+1 + yν2

Ψ
ψ2,t+1

)
(1 − ζt+1 − κ

2 (ΠP
t+1 − 1)2)Zt+1K

α−1
t

− βEtΥt+1
1 − α

αZt+1
(r̃Kt+1 + δ)K−α

t + βEtµt+1τ
K
t+1r̃

K
t+1.

The steady state corresponds to ΠP = 1, T = τK = 0, and 1 + r̃K = R̃N . We can then compute
the steady-state allocation, as well as the steady-state values of Lagrange multipliers. The model
dynamics can then be simulated using perturbation methods.

E.2.4 Quantitative assessment of the model with capital and taxes

We extend the calibration of Section E.2.2 (still with an annual period). For the production,
we set the capital share to α = 1/3 and the annual depreciation rate to δ = 0.1. Production
factors are determined as in Section 2.3 together with Lt = 1. We assume that the capital tax is
countercyclical and follows the simple rule τKt = −σkzt, with σk = 0.5. This rule implies that the
capital tax, as well as the lump-sum transfers, are null at the steady state, positive in recession,
but negative in booms. The outcome is reported in Panel B of Figure 6. Inflation barely moves
on impact and in the dynamics. Time-varying redistribution across agents is now done by the
tax system, and the inflation now has a modest role in the distribution of resources.

We can draw two main conclusions from our simple model exercise. The first is that monetary
policy can play an active role as a risk-sharing tool (see Panel A of Figure 6). The optimal
inflation response is nevertheless sensitive to the calibration, and especially to the inequality of

73



profit distribution, the slope of the Phillips curve, and the IES. Second, introducing a simple
taxation scheme that allows for redistribution basically turns off monetary policy. The inflation
response becomes much smaller in the presence of fiscal tools (see Panel B of Figure 6). In other
words, inflation allows for redistribution, but is a very costly substitute for fiscal policy.

E.3 Unequal profit distribution

We verify that the conclusions of Section E.2, remain valid in a quantitative model, similar to
the one of Sections 4 and 5, with the notable exception that profits are directly distributed to
agents and not taxed away by the government. As in Section E.2, agents of type i receive a
profit amount equal to (

∑
Syy)−1yνi Ωt, where ν ≥ 0 drives how unequal the profit distribution is.

Compared to Section 4, this modifies the budget constraints of the government and of households,
and hence the derivation of the Ramsey program.

E.3.1 The Ramsey program

The Ramsey program is similar to the one of Section 4.3, except that the budget constraints of
households and of the government (equations (45) and (48)) are modified as follows:

ai,t + ci,t = (1 + rt)ai,t−1 + wtyi,tli,t + Tt +
yνi,t∑
y Syy

ν

(
1 − ζt − κ

2 (ΠP
t − 1)2

)
Yt,

Bt + ζtYt − δKt−1 = Gt +Bt−1 + rtAt−1 + wtLt + Tt.

For space reasons, we directly present the FOCs of the truncated model. The SVL ψt,h is still
defined in (103). These FOCs with respect to R̃Nt , rt, and Tt are unchanged compared to the full
profit taxation of Section 4.3 and correspond to equations (83), (104), and (106), respectively.
The other FOCs are modified with new profit distribution.

FOC with respect to ΠP
t .

0 = κ(ΠP
t − 1)∑
y Syy

ν

∑
h∈H

St,h(yh0 )νψt,h + (γt − γt−1)(2ΠP
t − 1) (130)

+
(
β−1Υt−1 − Γt(1 − τKt )Bt−1

) R̃Nt−1

Yt
(
ΠP
t

)2 .
FOC with respect to ζt.

0 = wt
∑
h∈H

St,hy
h
0
(
lt,hψt,h + λl,t,hu

′(ct,h)
)

− (r̃Kt + δ)
(
β−1Υt−1 + Γt(1 − τKt )Kt−1

)
(131)

+
(ε− 1

κ
γt + µt − 1∑

y Syy
ν

∑
h∈H

St,h(yh0 )νψt,h
)
ζtYt − wtµtLt.
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FOC with respect to at,h. For unconstrained agents:

ψt,h = βEt

(1 + rt+1)
∑
h̃∈H

πhh̃ψ̂t+1,h̃

+ βEt
[
Γt+1(rt+1 − (1 − τKt+1)r̃Kt+1)

]
(132)

+ β
α

Kt
Et

wt+1
∑
h∈H

St+1,h(yh0 )ν
(
ψt+1,hlt+1,h + λl,t+1,hu

′(ct+1,h)
)

+ β
α

Kt
Et
[
µt+1

(
Yt+1ζt+1 − 1

α
(rt+1 + δ)Kt − wt+1Lt+1

)]
− β

α

Kt
Et
[(

(γt+1 − γt)ΠP
t+1(ΠP

t+1 − 1) − ε− 1
κ

γt+1(ζt+1 − 1)
)
Yt+1

]
− β

α− 1
Kt

Et
[
(r̃Kt+1 + δ)

(
β−1Υt + Γt+1(1 − τKt+1)Kt

)]
+ β

α

Kt
Et

Yt+1
1∑

y Syy
ν

(
1 − ζt+1 − κ

2 (ΠP
t+1 − 1)2

) ∑
h∈H

St+1,h(yh0 )νψt+1,h

 ,
while for constrained agents, we have at,h = −ā and λt,h = 0.

FOC with respect to lt,h.

ψt,h = 1
wtyh0

v′(lt,h) + λl,t,h
wtyh0

v′′(lt,h) − (1 − α) µt
wtLt

(Ytζt − wtLt)

+ (1 − α) Yt
wtLt

(
(γt − γt−1)ΠP

t (ΠP
t − 1) − ε− 1

κ
γt(ζt − 1)

)
+ (1 − α) r̃

K
t + δ

wtLt

(
β−1Υt−1 + Γt(1 − τKt )Kt−1

)
+ α

1
Lt

∑
h∈H

St,hy
h
0
(
lt,hψt,h + λl,t,hu

′(ct,h)
)

− (1 − α) Yt
wtLt

1∑
y Syy

ν

(
1 − ζt − κ

2 (ΠP
t − 1)2

) ∑
h∈H

St,h(yh0 )νψt,h.

The matrix representation to solve for the steady-state values of Lagrange multiplier, is
similar to the one Section D.5, with one exception, which is the steady-state value of the Lagrange
multiplier, γ, and which becomes:

ε− 1
κ

γY = Y

(
(yν)⊤(S ◦ψ)

(yν)⊤S
− µ

)
+ (r̃K + δ)

(
β−1Υ + Γt(1 − τK)K

)
+ wµL

− w(y ◦ l)⊤(S ◦ψ) − w(y ◦ u′(c))⊤(S ◦ λl).

E.3.2 The quantitative exercise

We now show that a modification of our baseline model, targeting same moments as Bhandari et al.
(2021) generate consistent results compared to theirs. We keep the same quarterly calibration as
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in Section 5, except that the Rotemberg cost parameter is set to κ = 20, instead of 100 in the
baseline quarterly calibration. This implies a slope of the quarterly Phillips curve equal to 6%, as
in Bhandari et al. (2021). A value κ = 20 implies an average price duration in the Calvo model
of 2.5 quarters (whereas a value of κ = 100 implies an average price duration of 5 quarters).

Furthermore, the parameter ν driving how unequal the profit distribution is, is set to ν = 2.3
to match the inflation movement in Bhandari et al. (2021). This implies that the most productive
agents hold 55% of profits.

Figure 7: IRFs after a negative productivity shock for relevant variables. The black line is
Economy 1′ with acyclical fiscal policy and optimal monetary policy. The blue dashed line is
Economy 2′ with acyclical fiscal policy and ΠP

t = 1.

We consider three economies that we denote with a prime compared to their counterpart
from the main text. Economies 1′ and 2′ are the parallel of Economy 1 and 2 of Section 5, but
with the updated calibration. They both implement the acyclical fiscal rule, but with either
optimal monetary policy (Economy 1′) or a constant inflation ΠP

t = 1 (Economy 2′). We report
the IRFs after a negative productivity shock of one standrad deviation in Figure 7. These IRFs
confirm the finding of the simple models of Section E.2: a large slope of the Phillips curve, and
an unequal profit distribution are key to generate a sizable inflation response. The maximal

76



quarterly inflation response approximately amounts to 0.065%, or 0.26% annually – which is the
same value as in Bhandari et al. (2021).

F Comparisons with the Reiter method

Since Section D.7 has shown that the uniform and refined truncation methods yield similar
results, we compare the Reiter method to the refined truncation method of Section D.7 (with
N = 5 and a refinement length of 20). We assume full price flexibility and no public spending
(G = 0), and hence no tax. The rest of the calibration (“preference and technology” and “shock
process”) is the same as in the baseline calibration of Table 1. We still use 5 idiosyncratic states.

First, Figure 8 plots the IRFs for the main variables after a negative TFP shock of one
standard deviation. The two models are very close, and almost indistinguishable. Second, we

Figure 8: IRFs after a negative TFP shock of one standard deviation, in percentage deviation for
all variables, except r in level deviation. The black solid line is Reiter method and red dashed
line is truncation method.

report first and second-order moments. First-order moments are similar by construction, as the
two methods involve a perturbation method around the same steady state. Normalized standard
deviations are reported in percent to ease the reading. Again, second-order moments are very
close. The difference is around 10−4, which is a good outcome.
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Reiter Truncation

Y Mean 1.4773 1.4773
Std(%) 1.4369 1.4524

C Mean 1.0252 1.0252
Std(%) 1.0558 1.0598

K Mean 18.0831 18.0832
Std(%) 1.3338 1.3667

L Mean 0.3610 0.3610
Std(%) 0.2110 0.2216

r Mean 0.0044 0.0044
Std(%) 0.0280 0.0286

w Mean 2.6187 2.6187
Std(%) 1.2927 1.2938

Correlations

corr(C, Y ) 0.9064 0.9130
corr(Y, Y−1) 0.9668 0.9672

Table 11: First- and second-order moments for key variables, comparing the same model simulated
with the Reiter’s method and the refined truncation method.

Third, we simulate the model for 10,000 periods to report the average and maximum relative
differences (i.e. divided by the mean of the variables) for Y , C, K, L, w, and absolute difference
for r between the two simulation methods. Again these results confirm that the two simulation
methods generate very close results.

Y C K L r w

Average 1.60 · 10−4 1.37 · 10−4 4.73 · 10−4 1.36 · 10−4 6.37 · 10−6 1.22 · 10−4

Maximum 8.34 · 10−4 6.54 · 10−4 2.45 · 10−3 6.63 · 10−5 3.51 · 10−5 6.72 · 10−4

Table 12: Average and maximum absolute differences for key variables between the two methods
for a simulation over 10,000 periods.

G Social weights and optimal fiscal policy

In this section, we explain how using social weights in the social welfare function enables us to
jointly consider optimal fiscal and monetary policies – with a missing instrument to avoid the
equivalence result of Section 3. We assume here that the capital tax does not vary along the
business cycle and is fixed at its optimal steady-state value τKSS .

We consider a social welfare function that departs from the utilitarian welfare. The utility
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functions of agents are heterogeneously weighted. We assume that these weights are consistent
with the sequential representation, and depends on initial conditions and idiosyncratic and
aggregate history. The weight of an agent i ∈ I is ωi,t = ωt((a−1, y0), yti , zt), where the sequence of
weights satisfy 1 =

´
i ωi,tℓ(di) =

∑
yt

i∈Yt

∑
y0∈Y

´
a−1∈[−ā;+∞) ωt((a−1, y0), yti , zt)θt(yti)Λ(da−1, y0)

for t ≥ 0. These weights represent the relative importance of each agent in the planner’s objective
and will be calibrated in our quantitative exercise below, so as to match the US fiscal and
monetary policies at the steady-state. Formally, the aggregate welfare criterion is:

W̃0 = E0

[ ∞∑
t=0

βt
ˆ
i
ωi,t (u(ci,t) − v(li,t)) ℓ(di)

]
. (133)

We consider the same setup as in Section 4, except that taxes are not determined through rules
(50)–(52), and that the planner’s objective is defined in (133). The Ramsey planner’s program now
involves the labor tax and is: max(τL

t ,Tt,wt,rt,w̃t,r̃K
t ,R̃

N
t ,Bt,Kt,Lt,ΠP

t ,(ai,t,ci,t,li,t,νi,t)i)t≥0
W̃0, subject to:

τkt = τkSS , and the same constraints as in Section 4.3 (but the fiscal rules).
To save some space, we directly solve for the truncated model.

G.1 The truncated Ramsey model

The truncated Ramsey program can be written as:

max
((at,h,ct,h,lt,h)h∈H,wt,rt,w̃t,r̃t,Bt,Tt,ΠP

t )
t≥0

E0

∞∑
t=0

βt
∑
h∈Y

[
St,h

(
ωh
(
ξu,0h u(ct,h) − ξv,0h v(lt,h)

)
−(λt,h − λ̃t,h(1 + rt))ξhu′(ct,h) − λl,t,h

(
ξv,1t,h v

′(lt,h) − wtyt,hξ
u,1
h u′(ct,h)

))]
,

subject to truncated-history constraints:

ct,h + at,h = wty
N
0 lt,h + (1 + rt)ãt,h + Tt, and ãt,h =

∑
h̃∈H

πh̃h
St−1,h̃
St,h

at−1,h̃.

to aggregate constraints:

Gt + rt (Bt−1 +Kt−1) + wtLt = Bt −Bt−1 − Tt +
(

1 − κ
π2,t
2

)
Kα
t−1L

1−α
t − δKt−1,

ΠP
t (ΠP

t − 1) = ε− 1
κ

(ζt − 1) + βEtΠP
t+1(ΠP

t+1 − 1)Yt+1
Yt

,

ζt = 1
Zt

(
r̃Kt + δ

α

)α (
w̃t

1 − α

)1−α
, At = Kt +Bt =

∑
h∈Y

St,hat,h, Lt =
∑
h∈Y

St,hy
N
0 lt,h,

and to interest rate constraints:

Et

[
RNt

ΠP
t+1

]
= Et

[
1 + r̃Kt+1

]
, (rt − (1 − τKSS)r̃Kt )At−1 = (1 − τKSS)(

R̃Nt−1
ΠP
t

− 1 − r̃Kt )Bt−1. (134)
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The Lagrangian associated to the previous Ramsey program is:

L = E0

∞∑
t=0

βt

∑
h∈Y

St,h

(
ωh
(
ξu,0h u(ct,h) − ξv,0h v(lt,h)

)
−
∑
h∈Y

St,h(λt,h − λ̃t,h(1 + rt))ξhu′(ct,h) −
∑
h∈Y

λl,t,hSt,h
(
ξv,1t,h v

′(lt,h) − wtyt,hξ
u,1
h u′(ct,h)

)

− (γt − γt−1)ΠP
t (ΠP

t − 1)Yt + ε− 1
κ

γt(
1
Zt

(
r̃Kt + δ

α

)α (
w̃t

1 − α

)1−α
− 1)Yt

+ µt

(
Bt − (1 − δ)Bt−1 −Gt − Tt + (1 − κ

2 (ΠP
t − 1)2)Yt − (rt + δ)At−1 − wtLt

)
+ 1
β

Υt−1(
R̃Nt−1
ΠP
t

− (1 + r̃Kt )) + Γt(rtAt−1 − (1 − τKt )(r̃Kt Kt−1 + (
R̃Nt−1
ΠP
t

− 1)Bt−1)
)

+ Λt

(
r̃Kt + δ

α
Kt−1 − w̃t

1 − α
Lt

)]
.

G.2 FOCs in the truncated model

We define the net SVL, ψ̂, as follows:

ψ̂t,h = ωhξ
u,0
h u′(ct,h) −

(
λc,t,hξ

u,E
h − (1 + rt)λ̃c,t,hξu,Eh − λl,t,hwty

N
0 ξ

u,1
h

)
u′′(ct,h) − µt.

Derivative with respect to R̃Nt .

(1 − τKSS)Et

[
Γt+1
ΠP
t+1

]
Bt = ΥtEt

[
1

ΠP
t+1

]
.

Derivative with respect to r̃Kt .

1
β

Υt−1 + Γt(1 − τKSS)(At−1 −Bt−1) =ε− 1
κ

γtKt−1 + Λt
1
α
Kt−1.

Derivative with respect to ΠP
t .

0 = µtκ(ΠP
t − 1) + (γt − γt−1)(2ΠP

t − 1) − (Γt(1 − τKSS)Bt−1 − β−1Υt−1)
R̃Nt−1

Yt
(
ΠP
t

)2 .
Derivative with respect to rt.∑

h∈H
St,hψ̂t,hãt,h = −

∑
h∈H

St,hλ̃t,hξhUc(ct,h, lt,h) − ΓtAt−1.

Derivative with respect to w̃t.

Λt = (1 − α) ε− 1
κ

γt.
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Derivative with respect to wt.

0 =
∑
h∈H

St,hy
N
0 (ψ̂t,hlt,h + λt,l,hξ

u,1
h u′(ct,h)).

Derivative with respect to Bt.

µt = βEt
[
µt+1

(
1 − δ + α

Yt+1
Kt

(
1 − κ

2 (ΠP
t+1 − 1)2

))]
(135)

− αβEt
[
((γt+1 − γt)ΠP

t+1(ΠP
t+1 − 1) + ε− 1

κ
γt+1)Yt+1

Kt

]
+ ε− 1

κ
βEt

[
γt+1

ζt+1Yt+1
Kt

]
+ βEtΛt+1

r̃Kt+1 + δ

α
+ β(1 − τKSS)Et

[
Γt+1

(
R̃Nt

ΠP
t+1

− 1 − r̃Kt+1

)]
.

Derivative with respect to at,h. For unconstrained truncated history h:

ψt,h = βEt [(1 + rt+1)ψi,t+1] + βEt
[
µt+1

(
− (1 + rt+1) + 1 − δ + α

Yt+1
Kt

(1 − κ

2 (ΠP
t+1 − 1)2)

)]
+ βEt

[
Γt+1

(
rt+1 − (1 − τK)r̃Kt+1

)]
+ βEt

[
Λt+1

r̃Kt+1 + δ

α

]
+ βEtΛt+1

(
r̃Kt+1 + δ

α

)

− αβEt
[(

(γt+1 − γt)ΠP
t+1(ΠP

t+1 − 1) − ε− 1
κ

γt+1(ζt+1 − 1)
)
Yt+1
Kt

]
,

while for constrained ones: at,h = −ā and λt,h = 0. Using (135) yields

ψ̂t,h = β

(1 + rt+1)
∑
h∈Y

πhh̃ψ̂t+1,h

+ βEt

[
Γt+1(rt+1 − (1 − τKt+1)( R̃

N
t

ΠP
t+1

− 1))
]
. (136)

FOC with respect to li,t.

ψ̂t,h =
ωt,hξ

v
t,h

wtyh
v′(lt,h) +

λl,tξ
v
t,h

wtyh
v′′(lt,h)

− (1 − α) µt
wtLt

Yt

(
1 − κ

2 (ΠP
t − 1)2

)
− Λt

w̃t
1 − α

1
wt

+ (1 − α) 1
wtLt

(
(γt − γt−1)ΠP

t (ΠP
t − 1) − ε− 1

κ
γt(ζt − 1)

)
Yt.

FOC with respect to Tt. ∑
h∈H

St,hψ̂t,h ≤ 0, (137)

with equality if Tt > 0.
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G.3 Steady state

We drop the t subscript to denote steady-state variables. The optimality conditions imply
ΠP = ζ = 1 and 0 = γ = Γ = Υ = Λ, while equations characterizing the Ramsey allocation are:

ψ̂h = ωhξ
u,0
h u′(ch) −

(
λc,hξ

u,E
h − (1 + rt)λ̃c,hξu,Eh − λl,hwty

N
0 ξ

u,1
h

)
u′′(ch) − µ, (138)

ψ̂h = β(1 + r)
∑

πhh̃ψ̂h̃, if h unconstrained, λh = 0, otherwise, (139)

ψ̂h = 1
wyN0

(ωhξv,0h v′(lh) + λl,hξ
v,1
h v′′(lh)) − µ(1 − α) Y

wL
, (140)

0 =
∑
h∈Y

Sh
(
ψ̂hãh + λ̃c,hξ

u,E
h u′(ch)

)
=
∑
h∈Y

Shlhyh
(
ψ̂h + λl,hξ

u,1
h (u′(ch)/lh)

)
=
∑
h∈Y

Shψ̂h, (141)

1 = β(1 + FK). (142)

G.4 A closed-form formula for the weights ωs

We use the same matrix notation as in Section D.5.

G.4.1 Notation

We start with the various ξs. Using truncation:

ξu,0h =
∑
h Shu(ch)
u(ch) , ξu,1h =

∑
h Shu

′(ch)
u′(ch) , ξv,0h =

∑
h Shv(ch)
v(ch) ,

while as in Section D.5, we use Euler equation to determine ξu,E and ξv,1 as:

ξu,E =
[(
I − β(1 + r)Π⊤

)
Du′(c)

]−1
ν, (143)

ξv,1 = wy ◦ l ◦ ξu,1 ◦ u′(c)./v′(l), (144)

where ./ denotes the element-wise division for vectors. We also introduce the following notation:

ξ̃
v,1 := ξv,1./(wy), ξ̃v,0 := ξv,0./(wy), ξ̃u,1 := ξu,1./l,

as well as: λ̄l := S ◦ λl, λ̄c := S ◦ λc ψ̄ := S ◦ ψ̂, Π̄ := S ◦ Π⊤ ◦ (1./S) , ω̄ := S ◦ ω. With this
notation, we have: S ◦ λ̃c := Π(S ◦ λc) = Πλ̄c.

These definitions imply that (138)–(142) become:

ψ̄ = ω̄ ◦ ξu,0 ◦ u′(c) − µS (145)

−
(
λ̄c ◦ ξu,E − (1 + r)Πλ̄c ◦ ξu,E − wλ̄l ◦ y ◦ l ◦ ξ̃u,1

)
◦ u′′(c),

Pψ̄ = β(1 + r)P Π̄ψ̄, (146)
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(I − P )λ̄c = 0, (147)

ψ̄ = ω̄ ◦ ξ̃v,0 ◦ v′(l) + λ̄l ◦ ξ̃v,1 ◦ v′′(l) − µFLS/w, (148)

ã⊤ψ̄ = −
(
ξu,E ◦ u′(c)

)⊤
Πλ̄c, (149)

(y ◦ l)⊤ ψ̄ = −
(
y ◦ l ◦ ξ̃u,1 ◦ u′(c)

)⊤
λ̄l, (150)

1⊤ψ̄ = 0, (151)

which is a system in ψ̄, ω̄, λ̄c, λ̄l, µ, which characterizes the allocation.

G.4.2 FOCs in matrix form

Equation (148) yields:

λ̄l = M0ω̄ +M1ψ̄ + µV 0, (152)

with M0 = −M1Dξ̃
v,0◦v′(l), M1 = D−1

ξ̃
v,1◦v′′(l)

, V 0 = FLM1S./w. Then, equation (145) implies:

ψ̄ = M̂0ω̄ + M̂1λ̄c + M̂2λ̄l − µS, (153)

with: M̂0 = Dξu,0◦u′(c), M̂1 = −Dξu,E◦u′′(c)(I − (1 + r)Π), M̂2 = wD
y◦l◦ξ̃u,1◦u′′(c). So using

(152) and (153), we obtain:

ψ̄ = M3ω̄ +M4λ̄c + µV 1, (154)

with: M2 = I−M̂2M1, M4 = M−1
2 M̂1, M3 = M−1

2 (M̂0+M̂2M0), V 1 = M−1
2 (M̂2V 0−S).

Then, using (146), (147), and (154), we get:

λ̄c = M5ω̄ + µV 2, (155)

with R̃5 = −((I −P ) +P (I − β(1 + r)Π̄)M4)−1P (I − β(1 + r)Π̄), M5 = R̃5M3, V 2 = R̃5V 1.
We then use equation (149), which becomes with (154) and (155): µ = −L1ω̄, with: C1 =
ã⊤(V 1 +M4V 2) + (ξu,E ◦ u′(c))⊤ΠV 2, L1 = (ã⊤(M3 +M4M5) + (ξu,E ◦ u′(c))⊤ΠM5)/C1.

We deduce from (152), (154), and (155):

λ̄l = M̂6ω̄, λ̄c = (M5 − V 2L1)ω̄, and ψ̄ = M6ω̄, ‘

with: M6 = M3 +M4(M5 − V 2L1) − V 1L1 and M̂6 = M0 +M1M6 − V 0L1.
The constraints (150) and (151) become:

L3ω̄ = L4ω̄ = 0, (156)

with: L3 = (y ◦ l)⊤M6 + (y ◦ l ◦ ξ̃u,1 ◦ u′(c))⊤M̂6, L4 = 1⊤M6.
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G.4.3 Constructing the social weights

We assume that there are K distinct social weights, ωs, where K is the number of productivity
levels. Define M7 as the Ntot ×K matrix of elements in {0, 1}. The element of row h in column
y is 1 if the current productivity of history h is y. We thus have: ω̄ = DSM7ω

s. We define the
social weights as the ones that are the closest to utilitarian weights, such that constraints (156)
hold. Formally, they are given as a solution of the following minimization problem:

min
ω

∥ωs − 1K∥2 ,

s.t. L3DSM7ω
s = L4DSM7ω

s = 0.

Denoting by 2µ3 and 2µ4 the Lagrange multipliers on the two constraints, the FOCs imply:

ωs = 1K +
4∑

k=3
µk(LkDSM7)⊤, (157)

which once substituted in constraints (156) yield:
[
µ3

µ4

]
= M−1

8 V 8, with:

M8 =
[
L3DSM7

L4DSM7

] [
L3DSM7

L4DSM7

]⊤

and V 8 = −
[
L3DSM71K
L4DSM71K

]
.

Finally, from (157), we deduce the following expression for the social weights:

ωs = 1K +M−1
8 V 8

[
L3DSM7

L4DSM7

]⊤

.

H Monetary shocks and inequality

In this section, we solve the model to study the effect of a contractionary monetary shock of
one standard deviation on the dynamics of inequality using a standard Taylor rule. As shown
in Section 4, the dynamics of price inflation are sensitive to the choice of the fiscal rule. To
abstract from the effect of fiscal policy, we assume that there is no public spending need (G = 0),
hence zero tax. The rest of the calibration follows Section F. Firms’ profits are distributed to
households and we set ν = 10 as in Section E.3. Because firms profits are null at steady-state,
the steady state is the same as in Section F. We check that the dynamics of inequality are in
line with the empirical evidence of Coibion et al. (2017). The nominal gross and pre-tax interest
rate R̃Nt is set according to the following simple Taylor rule: R̃N

t

R̃N =
(

ΠP
t

ΠP

)ϕΠ
ζTaylor
t , where: (i)

log(ζTaylor
t ) = ρTaylor log(ζTaylor

t−1 ) + εTaylor
t is a persistent monetary policy shock with ρTaylor = 0.5;

(ii) R̃N and ΠP are steady-state values, and (iii) the response of the nominal interest rate to
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inflation is equal to ϕΠ = 1.5. These are standard values in this literature (see Galí, 2015).
We report in Figure 9 the IRFs for the innovation to the Taylor rule, the rate of inflation,

and output. The responses of aggregate quantities to this contractionary monetary policy shock
are consistent with empirical evidence and the rest of the literature (Kaplan et al., 2018 among
others). The real interest rate falls, depressing consumption and investment and causing inflation
and output to fall.

Figure 9: IRFs after a contractionary shock, in percentage deviation for all variables.

We also report in Figure 10 the responses of the Gini coefficients for income, consumption,
and wealth corresponding to the same shock as in Figure 9. In line with the literature (see
Gornemann et al., 2016 and Coibion et al., 2017), contractionary monetary policy increases these
Gini coefficients and hence inequality.

Figure 10: Gini coefficients of income, consumption, and wealth after the contractionary monetary
shock of Figure 9. An increase by 1 indicates an increase of the Gini coefficient by 0.1 pp.
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I The sticky-wage economy

I.1 The price Phillips curve

Following the New Keynesian sticky-wage literature, labor hours are supplied monopolistically by
a continuum of unions of size 1. We denote by Lkt the labor supply of union k at date t and Wkt

the related nominal wage. A competitive aggregator pools union-specific labor supplies together
with a constant elasticity of substitution εW :

Lt =
(ˆ

k
L

εW −1
εW

kt dk

) εW
εW −1

. (158)

The objective of the competitive aggregator is to choose union labor supplies that minimize the
total labor cost

´
kWktLktdk subject to (158). We obtain:

Lkt =
(
Wkt

Wt

)−εW

Lt, (159)

where Wt =
(´

kW
1−εW
kt dk

) 1
1−εW is the nominal wage index.

The objective of each union k is to bargain the nominal wage Wkt that maximizes the
intertemporal welfare of its members, while fulfilling the demand of (159). The nominal wage
adjustment is assumed to imply a utility cost, equal to ψW

2 (Wkt/Wkt−1 − 1)2. The objective of

union k is thus: max(Wks)s
Et
∑∞
s=t β

s
´
i

(
u(ci,s) − v(li,s) − ψW

2

(
Ŵks

Ŵks−1
− 1

)2)
ℓ(di), subject to

(159) and where ci,t and li,t are the consumption and labor supply of agent i. The FOC with
respect to Wkt thus writes as:

ΠW
t (ΠW

t − 1) = Wkt

ψW

ˆ
i

(
u′(ci,t)

∂ci,t
∂Wkt

− v′(li,t)
∂li,t
∂Wkt

)
ℓ(di) + βEt

[
ΠW
t+1(ΠW

t+1 + 1)
]
, (160)

where the wage inflation rate is denoted by: ΠW
t = Wkt/Wkt−1. Agent i supplies likt hours to

every union k, such that lit =
´
k liktdk. Focusing on the symmetric equilibrium: likt = Lkt, we

thus deduce from (159):

Wkt
∂li,t
∂Wkt

= Wkt

∂
(´
k

(Wkt
Wt

)−εWLtdk
)

∂Ŵkt

= −εWLkt. (161)

The derivative of consumption ∂ci,t

∂Wkt
is equal to the derivative of the net total income, equal to

Wktyi,tli,t/Pt. Formally:

Wkt
∂ci,t
∂Wkt

=
(
li,t +Wkt

∂li,t
∂Wkt

)
Wktyi,t
Pt

= (1 − εW )WktLkt
yi,t
Pt
. (162)

Because of the symmetric equilibrium assumption, we have Wkt = Wt and lit = Lkt = Lt.
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Combining (160) with the partial derivatives (161) and (162), we deduce the following Phillips
curve for wage inflation:

ΠW
t (ΠW

t − 1) = εW
ψW

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)︸ ︷︷ ︸
labor gap

)
Lt + βEt

[
ΠW
t+1(ΠW

t+1 − 1)
]
, (163)

where wt = Wt/Pt is the real pre-tax wage.

I.2 The rest of the environment

The rest of the economy is similar to the one described in Section 4 and we keep the same
notation. Households solely invest in shares of mutual fund and equations (42) and (43) hold.
Household’s budget constraint is still expressed by equation (45), while their credit limit is given
by equation (46). Their unique Euler equation is again expressed by (47). The governmental
budget constraint is given by equation (48), while the financial market clearing condition is (49).

Monetary policy still consists in choosing the nominal interest rate R̃Nt on public debt
(between t and t+ 1), affecting the gross inflation rate ΠP

t . But know, this price inflation path
(ΠP

t )t≥0 needs to be consistent with the paths of wage inflation (ΠW
t )t≥0 and net wages (wt)t≥0.

Indeed, with ΠP
t = Pt

Pt−1
:

ΠW
t = Wt

Wt−1
= wtPt
wt−1Pt−1

= wt
wt−1

ΠP
t . (164)

The fiscal parameters are driven by the set of acyclical fiscal rules (50)–(52).

I.3 Ramsey program with sticky wages

The Ramsey program can be written as:

max
(wt,rt,w̃t,r̃K

t ,R̃
N
t ,Tt,Kt,Lt,ΠW

t ,ΠP
t ,(ai,t,ci,t,νi,t)i)t≥0

E0

∞∑
t=0

βt
[ˆ

i
(u(cit) − v(Lt))ℓ(di) − ψW

2 (ΠW
t − 1)2

]
,

(165)

s.t. ΠW
t (ΠW

t − 1)= εW
ψW

(
v′(Lt)− εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt+βEt

[
ΠW
t+1(ΠW

t+1 − 1)
]
, (166)

ΠP
t = wt−1

wt
ΠW
t , (167)

and subject to: the fiscal path (τKt , τLt , Bt)t≥0 following the fiscal rules (50)–(52), the governmental
budget constraint (48), the household budget constraint (45), the household credit constraint
(46), the Euler equations on consumption (47), the market clearing condition (49), the labor
market clearing condition (19), the fund no-profit condition (42), the no-arbitrage condition (43),
and the post-tax rate definitions (9) and (44).
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Compared to the Ramsey program of Section 4.3 in the sticky-price economy, there are
two main differences. First, the price Phillips curve (7) is replaced by the wage Phillips curve
(166). The maximization thus further includes the wage inflation ΠW

t . The price inflation is still
included, as it affects the interest rate in (42). It is connected to wage inflation through (167),
Second, all households supply the same number of working hours Lt. The FOCs on labor (18)
and the labor market clearing condition (19) are thus not constraints any more.

Denoting by βtγWt the Lagrange multiplier of the wage Phillips curve, the Lagrangian can be
written as:

L = E0

∞∑
t=0

βt
ˆ
i
(u(cit) − v(Lt))ℓ(di) − E0

∞∑
t=0

βt
ψW
2 (ΠW

t − 1)2

− E0

∞∑
t=0

βt
ˆ
i

(
λit − (1 + rt)λit−1

)
u′(cit)ℓ(di)

− E0

∞∑
t=0

βt(γWt − γWt−1)ΠW
t (ΠW

t − 1) + εW
ψW

E0

∞∑
t=0

βtγWt

(
v′(Lt) − εW − 1

εW
wt

ˆ
i
yi,tu

′(ci,t)ℓ(di)
)
Lt

+ E0

∞∑
t=0

βtµt

(
Bt + Yt − δ(

ˆ
i
ai,t−1ℓ(di) −Bt−1) −Gt −Bt−1 − rt

ˆ
i
ai,t−1ℓ(di) − wtLt − Tt

)

+ E0

∞∑
t=0

βt−1Υt−1(
R̃Nt−1
ΠP
t

− (1 + r̃Kt )) + E0

∞∑
t=0

βtΛt
(
wt−1ΠW

t − wtΠP
t

)
+ E0

∞∑
t=0

βtΓt(rt
ˆ
i
ai,t−1ℓ(di) − (1 − τKt )(r̃Kt Kt−1 + (

R̃Nt−1
ΠP
t

− 1)Bt−1).

The planner’s instruments are: ai,t for individual variables and Lt, R̃Nt , rt, ΠW
t and ΠP

t for
aggregate variables.

Derivative with respect to R̃Nt .

ΥtEt

[
1

ΠP
t+1

]
= βBtEt

[
(1 − τKt+1) Γt+1

ΠP
t+1

]
.

Derivative with respect to ΠP
t .

Λtwt +
(
β−1Υt−1 − Γt(1 − τKt )Bt−1

) R̃Nt−1(
ΠP
t

)2 = 0.

Derivative with respect to Πw
t .

ψW (ΠW
t − 1) = Λtwt−1 − (γWt − γWt−1)(2ΠW

t − 1).
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Derivative wrt rt.ˆ
i

(
ψSW,it ait−1 + λit−1u

′(cit)
)
ℓ(di) + (Γt − µt)

ˆ
i
ai,t−1ℓ(di) = 0,

where ψSW,it is defined in equation (69).

Derivative wrt Lt.

v′(Lt)
ˆ
i
ωitℓ(di) =(1 − α)wt

ˆ
ψSW,it yitℓ(di) − α

wt
Lt

(
βEt

[
Λt+1ΠW

t+1

]
− ΠP

t Λt
)

+ εW
ψW

γWt

[
v′(Lt) + Ltv

′′(Lt) − εW − 1
εW

(1 − α)wt
ˆ
i
yi,tu

′(ci,t)ℓ(di)
]

+ µt (w̃t − wt(1 − α)) − αw̃t
Kt−1

(
β−1Υt−1 + (1 − τKt )ΓtKt−1

)
.

Derivative wrt ait.

ψSW,it = βEt
[
ψSW,it+1 (1 + rt+1)

]
+ βαEt

[
wt+1Lt+1

Kt

ˆ
i
ψSW,it+1 yit+1ℓ(di)

]
− β

εW − 1
ψW

αEt

[
wt+1Lt+1

Kt
γWt+1

ˆ
i
yi,t+1u

′(ci,t+1)ℓ(di)
]

+ βEt

[
µt+1

(
α
Yt+1
Kt

− (δ + rt+1) − α
wt+1
Kt

Lt+1

)]
+ β

(1 − α)
Kt

Et
[
(r̃Kt+1 + δ)

(
β−1ΥtΓt+1 + Γt+1(1 − τKt+1)Kt

)]
+ βEt

[
Γt+1

(
rt+1 − (1 − τKt+1)r̃Kt+1

)]
+ βEt

[
α
wt+1
Kt

(
βΛt+2ΠW

t+2 − Λt+1ΠP
t+1

)]
.

Derivative wrt Tt.
µt =

ˆ
j
ψSW,jt ℓ(dj). (168)

I.4 The implementation result

The property of the allocation where ΠW
t = 1 are easy to derive from the program of the planner.

First, the post-tax real wage must satisfy (from equation (166)): wt εW −1
εW

´
i yi,tu

′(ci,t)ℓ(di) =
v′(Lt), and the price inflation is linked to the real wage dynamics ΠP

t = wt−1/wt, from equation
(167). Using these expression in the program (62), one finds that the dynamics of the economy is
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given by the following equations:

Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt + Yt − δKt−1, (169)

for all i ∈ I: ait + cit = (1 + rt)ait−1 + wty
i
tLt + Tt, (170)

ait ≥ −ā, νit(ait + ā) = 0, νit ≥ 0, (171)

u′(cit) = βEt
[
(1 + rt+1)u′(cit+1)

]
+ νit , (172)

v′(Lt) = εW − 1
εW

wt

ˆ
i
yi,tu

′(ci,t)ℓ(di), (173)

Kt +Bt =
ˆ
i
aitℓ(di), (174)

wt = (1 − τLt )w̃t, (175)

rtAt−1 = (1 − τKt )
(
r̃Kt Kt−1 +

(
R̃Nt−1

wt
wt−1

− 1
)
Bt−1

)
, (176)

R̃Nt Et
[
wt+1
wt

]
= Et

[
1 + r̃Kt+1

]
/Et

[
wt+1
wt

]
, (177)

r̃Kt + δ = αKα−1
t−1 L

1−α
t , (178)

w̃t = (1 − α)Kα
t−1L

−α
t , (179)

Yt = ZtK
α
t−1L

1−α
t , (180)

together with the initial conditions ai−1, B−1 for all agents i, and with the fiscal rules (50)–(52).
In this economy, the nominal interest rate is determined by the expectations of real variables
(177) to implement ΠW

t = 1.

I.5 Simulating the sticky-wage economy

In this section we provide the truncated and matrix representations that allow us to simulate
to sticky-wage economy (Sections I.5.1 and I.5.2). We also report some simulation results that
complement those of the main text (Section I.5.3).

I.5.1 The truncated model

Similarly to Section D, and in particular to Section D.4, we derive the FOCs of the Ramsey
program in the truncated model. The FOCs with respect to R̃Nt , ΠP

t , ΠW
t , Tt are unchanged

compared to the individual case. We define the truncated version of ψSW,it of equation (69), that
we still denote ψh,t for the sake of simplicity as follows:

ψh,t = ξu,0h u′(ch,t) − (λh,t − (1 + rt)λ̃h,t−1)ξu,Eh u′′(ch,t)− εW − 1
ψW

γWt wtLtyh,tξ
u,1
h u′′(ch,t). (181)
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Derivative wrt rt.

0 =
∑
h

Sh,t
(
ψh,tãh,t + λ̃h,tξ

u,E
h u′(ch,t)

)
+ (Γt − µt)At−1. (182)

Derivative wrt Lt.

v′(Lt)
∑
h

Sh,tωh,t = µt(w̃t − (1 − α)wt) + εW
ψW

γWt (v′(Lt) + v′′(Lt)Lt) (183)

+ (1 − α)wt
∑
h

(
Sh,tyh,tψh,t − εW − 1

ψW
γWt Sh,tyh,tu

′(ch,t)
))

− αw̃t

(
β−1 Υt−1

Kt−1
+ Γt(1 − τKt )

)
− α

wt
Lt

(
βEt[Λt+1ΠW

t+1] − ΛtΠP
t

)
.

Derivative wrt ah,t. For unconstrained truncated histories (i.e., νh = 0):

ψh,t = βEt
[
(1 + rt+1)

∑
h̃

Πhh̃ψh̃,t+1

]
(184)

+ βαEt
wt+1Lt+1

Kt

∑
ĥ

(
Sĥ,t+1yĥ,t+1ψĥ,t+1 − γWt+1

εW − 1
ψW

Sĥ,t+1yĥ,t+1u
′(cĥ,t+1)

)
+ βEt

[
Γt+1(rt+1 − (1 − τKt+1)(r̃Kt+1 − (1 − α)(r̃Kt+1 + δ)))

]
+ βEt

[
µt+1
Kt

(αYt+1 −Kt(δ + rt+1) − αwt+1Lt+1)
]

+ βαEt
[
wt+1
Kt

(−Λt+1ΠP
t+1 + βΛt+2ΠW

t+2)
]

+ (1 − α)
Kt

ΥtEt[r̃Kt+1 + δ].

For constrained agents, we have at,h + ā = 0 and λt,h = 0.

I.5.2 Matrix representation of the steady-state allocation

At the steady state, we have Z = 1, and the FOCs with respect to R̃Nt , ΠP
t and ΠW

t at
steady-state imply that ΠW = ΠP = 1 and Λ = 0. We use the same the notation as in
Section D.5. We still have S = Π⊤S and S ◦ λ̃c = Π⊤(S ◦ λc). The budget constraint implies:
S ◦ c+ S ◦ a = (1 + r)Π⊤(S ◦ a) + S ◦W ◦ L, while Euler equations still imply that we are
looking for a vector ξu such that: ξu ◦ u′(c) = β(1 + r)Π (ξu ◦ u′(c)) + ν. The FOC (182) with
respect to rt implies that we can express Γ as:

Γ = µ− 1
A

[
ã⊤ψ̄ + (ξu,E ◦ u′(ch))⊤

(
Π⊤(S ◦ λ)

)]
. (185)
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The definition (181) of ψh,t implies that the vector ψ̄ = S ◦ ψ can be expressed as:

ψ̄ = M2λ̄+L2 + γW L̃2, (186)

with: M2 = −Dξu,E◦u′′(c)

(
I − (1 + r)Π⊤

)
,

L2 = S ◦ ξu,0 ◦ u′(c),

L̃2 = −εW − 1
ψW

wLS ◦ y ◦ ξu,1 ◦ u′′(c).

The FOC (184) with respect to ah,t becomes:

Pψ̄ = β(1 + r)PΠψψ̄ + βα
wL

K
PS(y)⊤ψ̄ − βα

εW − 1
ψW

wL

K
γWPSy⊤(S ◦ u′(c))

+ β

K
PSµ (α (Y − wL) − (δ + r)K) + βΓPS(1 − τK)(1 − α)(r̃K + δ)A

K
.

Using (185) to substitute Γ, we obtain:

PL̃1ψ̄ = PM1λ̄+ PL1µ+ PN1γ
W , (187)

with: L̃1 = I − β(1 + r)Πψ − α
β

K
wLS(y)⊤ + β

K
(1 − α)(r + δ(1 − τK))Sã⊤,

L1 = β

K

(
α (Y − wL) −K (r + δ) + (1 − τK)(1 − α)(r̃K + δ)A

)
S,

M1 = −β 1
K

(1 − α)
(
r + δ(1 − τK)

)
S(ξu,E ◦ u′(c))⊤Π⊤,

N1 = −βαεW − 1
ψW

wL

K
Sy⊤(S ◦ u′(c)).

Combining (187) with the definition (186) of ψ̄ and the fact that for unconstrained agents, we
have: (I − P )λ̄ = 0, we obtain the following expression for λ̄:

λ̄ = L̃3µ+L3 + L̂3γ
W , (188)

with M3 = I−P +P (L̃1M2 −M1), L̃3 = M−1
3 PL1, L3 = −M−1

3 PL̃1L2, L̂3 = M−1
3 P (N1 −

L̃1L̃2).
Plugging the expression (188) into the definition (186) of ψh,t, we obtain:

ψ̄ = L4 + L̃4µ+ L̂4γ
W , (189)

with L4 = M2L3 +L2, L̃4 = M2L̃3, L̂4 = M2L̂3 + L̃2.
The FOC (183) with respect to Lt combined with the expression (185) yields:

v′(L) = L⊤
5 ψ̄ + Ĉ5γ

W + C̃5µ+ L̃⊤
5 λ̄, (190)

with L⊤
5 = (1−α)wy⊤ +(1−α)(1−τK) r̃K+δ

L ã⊤, Ĉ5 = εW
ψW

(
v′(L)+v′′(L)L−(1−α) εW −1

εW
wy⊤(S◦

92



u′(c))
)
, C̃5 = (1−α) 1

L(Y −A(1−τK)(r̃K+δ)−wL), L̃⊤
5 = (1−α)(1−τK) r̃K+δ

L (ξu,E ◦u′(c))⊤Π⊤.
Substituting the expressions (186) and (188) of ψ̄ and λ̄, the previous equation becomes:

0 = C6 + C̃6µ+ Ĉ6γ
W , (191)

with C6 = L⊤
5 L4 + L̃⊤

5 L3 − v′(L), C̃6 = L⊤
5 L̃4 + L̃⊤

5 L̃3 + C̃5, Ĉ6 = L⊤
5 L̂4 + L̃⊤

5 L̂3 + Ĉ5.
The FOC (168) with respect to Tt can be written at the steady as 1⊤

T ψ̄ = µ, which with the
expression (186) of ψ̄ becomes:

0 = C7 + C̃7µ+ Ĉ7γ
W , (192)

with C7 = 1⊤
TL4, C̃7 = 1⊤

T L̃4 − 1, Ĉ7 = 1⊤
T L̂4.

Finally, combing (191) and (192) allows us to deduce γW = − C̃7C6−C̃6C7
C̃7Ĉ6−C̃6Ĉ7

and µ = − Ĉ7C6−Ĉ6C7
C̃6Ĉ7−C̃7Ĉ6

.
We thus obtain the expressions of γW and µ as a function of the allocation. We can then deduce
the expressions of Γ, λ̄, and ψ̄ using (185), (188), and (186). We then obtain L from equation
(190), while Υ is given by: Υ = β(1 − τK)ΓB.

I.5.3 Additional simulation results

We provide here some simulation results that complement those of Section 6.4. First, we report
in Table 13 the steady-state distribution of wealth implied by the sticky-wage model. The
distribution is very similar to the one implied by the sticky-price model (see Table 2). The
conclusions are thus similar to the one of Section 5.1: the model does a good job in reproducing
the data, but at the very top of the distribution.

Data Model

Wealth statistics PSID, 06 SCF, 07

Q1 −0.9 −0.2 0.0
Q2 0.8 1.2 0.3
Q3 4.4 4.6 5.4
Q4 13.0 11.9 18.7
Q5 82.7 82.5 76.6

Top 5% 36.5 36.4 34.5
Gini 0.77 0.78 0.73

Table 13: Wealth distribution in the data and in the sticky-wage model.

Second, we report the outcomes of the model using a cyclical fiscal rule. We use the same
fiscal rule as in Section D.8 for the sticky-price economy. The rule is given in equations equations
(50)–(51), with the same parameter values as in Section D.8: (σL1 , σL2 , σK1 , σK2 , σT , σB) =
(−0.6, 0.5, 0.6,−0.5, 8.5, 4.0). We conduct the same experiment as in the sticky-price economy.

93



We simulate the sticky-wage model after a negative TFP shock of one standard deviation. We
plot the IRFs in Figure 11. We call Economy 4 the economy with the time-varying fiscal rule
and optimal monetary policy.

Figure 11: IRFs after a negative productivity shock of one standard deviation for relevant
variables. The black line is the Economy 1 with the acyclical fiscal rule and optimal monetary
policy. The blue dashed line is Economy 4, with time-varying fiscal rule and optimal monetary
policy.

I.5.4 Role of the slope of the wage-Phillips curve

As for the price Phillips curve, the empirical literature offers quite a large range of estimates
for the slope of the wage Phillips curve. We consider four different values of the slope: 1% (our
benchmark), 3% (Auclert et al., 2024), 18%, and 35% (these two last values are correspond to
two specifications estimated in Beraja et al., 2019). We then simulate the model after a negative
TFP shock with these different slope values. More precisely, as in the price case, we keep the
value of the elasticity εw unchanged to 21 and consider different values of the wage adjustment
cost ψw implied by the various values of the slope – corresponding to εw/ψw in the Rotemberg
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model. The rest of the calibration is the same as the baseline one of Table 3. We report the
quarterly wage and price inflation implied by the model simulations in Figure 12. Results confirm
those of the main text. Wage inflation barely moves, since the maximal absolute movement is
smaller than 0.04% (on a quarterly basis). Oppositely, price inflation moves by a sizable amount
to allow the real wage to adjust and equalize the marginal productivity of labor..

Figure 12: IRFs in percentage points after a negative TFP shock in the sticky-wage economy.
Quarterly wage inflation (left-hand side) and price inflation (right-hand side) are given in
percentage points. The different curves correspond to the different values of the slope of the
Phillips curve, given in the legend.
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