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Abstract

This chapter surveys heterogenous agent models with rational expectations that deliver

a finite number of heterogenous agents as an equilibrium outcomes. Instead of having a

distribution with infinite support to follow, this class of models endogenously generates a

finite number of agents as an equilibrium outcome. As a consequence, many of the additional

tools and techniques developed in the DSGE literature with a representative agent can easily

be imported in this class of models, allowing these models to be brought to the data with

advanced econometric techniques. No-trade, small-heterogeneity and truncation methods are

presented. The derivation of optimal policies is presented in these environments. Finally,

the chapter discusses the relation with other heterogenous agent models that don’t rely on

rational expectations, namely agent-based models.
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1 Introduction

Heterogeneity is now everywhere in the macroeconomy. Both on the normative and on the

positive side, considering redistribution across agents with different wealth levels or economic

behaviors is obviously key for economic analysis. Economists mostly use the term “heterogene-

ity” to refer to the multiple dimensions according to which economic agents could differ. The
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public debate is mostly concerned by “inequalities”, which refer to differences in income, wealth

or consumption. Inequality should thus be understood as a subset of the broadest concept of

heterogeneity for which a simple cardinal ranking of agents is possible (along the wealth dimen-

sion for instance). This being said, two lines of research dealing with agents heterogeneity have

coexisted since many years.

A first line of research assumes that agents are rational, such that their differences come

either from characteristics they have before starting economic activities or from different his-

tories of “shocks” they face in their life. The notion of shocks should be broadly understood,

including income shocks, but also health shocks, “family” shocks (See Heathcote, Storesletten,

and Violante (2009) for a discussion of sources of risk). The key tool to model agent hetero-

geneity is the class of models with uninsurable idiosyncratic risks, which have different names

in the literature: They are called either the Bewley-Hugget-Imohoroglu-Aiyagari models, or the

Standard Incomplete Market model (SIM), or even simply Heterogeneous Agent models. This

source of heterogeneity can be mixed with the introduction of the age dimension, in overlapping

generation models, to obtain a very rich representation of heterogeneity across households (Rios-

Rull (1995) and Rios-Rull (1997) for an early survey). After the contribution of Krusell and

Smith (1998) these models are solved with aggregate shocks (Algan, Allais, DenHaan, Rendahl

(2014) for a comparison of numerical methods).

Recent research now introduces many relevant frictions in this class of model, which were

originally developed in the Dynamic Stochastic General Equilibrium (DSGE) literature with

a representative agent. These frictions are sticky-prices, search-and-matching frictions on the

labor market and habit-formation or limited-participation in financial markets (see Krusell,

Mukoyama, Sahin (2010); Gornemann, Kuester, Nakajima (2012); Ravn and Sterck (2013); Ka-

plan, Moll Violante (2016); Challe, Matheron, Ragot and Rubio-Ramirez (2016) among others).

These recent contributions have shown that heterogeneity is important for macroeconomists for

positive and not only normative analysis. The effect of technology shocks, of fiscal or monetary

policy shocks are different between representative-agent world, and models where agents face

uninsurable risks. To give a concrete example, Challe, Matheron, Ragot and Rubio-Ramirez

(2016) show that agents facing an expected increase in unemployment save to self-insure, as

they are afraid to fall into unemployment. This contributes to a fall in aggregate demand, which

reduces the incentives to post vacancies and increases unemployment. This negative feedback
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loop is a form of a “paradox of thrift”, which is absent in representative agent models. This

may explain a third of the fall in the consumption of non-durable goods with respect to trends

after 2008. Krueger, Mitman and Perri (2015) present other evidence of the importance of

heterogeneity/inequality among households in the subprime crisis.

The goal of this chapter is to review recent methods to solve these models, which allow

for an easy introduction of these frictions in general equilibrium. These methods are based on

a simplification of the structure of heterogeneity (motivating the title of this chapter) and on

simple perturbation methods. The models generate a finite number of equations to describe

agent heterogeneity. The gain of this reduction in heterogeneity is threefold. First, it allows

deriving clear analytical insights in this class of model. Second, the model can be solve very

rapidly. It allows the use of econometric technics, such as estimation of the model with Bayesian

tools. Third, one can derive normative implications from optimal policies in these environments.

This class of model also has some drawbacks, resulting from the simplifying assumptions that

are necessary to obtain a finite number of agent types in equilibrium. The use of perturbation

methods for the aggregate risk (as in the DSGE literature) generates well-known problems about

the determinacy of equilibrium portfolios with multiple assets. Recent papers emphasize non-

convex portfolio adjustment costs, which could help in this dimension (See Kaplan, Moll and

Violante 2016 and Ragot 2014). Finally, on the quantitative side, the models using truncated

idiosyncratic histories may be more promising in matching relevant wealth distribution, as the

wealth distribution can be made close to the full-fledge model when one increases the number

of equations (See Section 7 below).

The balance of the costs of benefits of using this class of model obviously depends on the

problem under consideration, as will be clear in this Chapter. For some problems, the simulation

of the full-heterogeneity model with aggregate shocks may be necessary. The limitations and

possible developments in the reduced-heterogeneinty literature are further discussed at the end

of this survey, in Section 7.

The tools used in this chapter are designed to solve models with rational expectations (in

a broad sense). These models differ from a second line of research on heterogeneous agents

that depart from rational expectations. The models are labelled Agents-Based Models (ABM)

and are developed in a vast literature that assume some specific behavioral rules. Section 8 is

dedicated to the discussion of the these two lines of research.
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This chapter is mostly methodological. It details benchmark models generating reduced het-

erogeneity and it sketches algorithms to solve them. Other approaches to solve heterogeneous-

agent models with perturbation methods are used in the literature. The discussion and com-

parison with these alternative approaches is left for Section 7.

The presentation of this chapter follows the order of the complexity of the models. First, the

basic problem is presented in Section 2 to lay down notations. Then, some economic problems

can be quantitatively investigated in environments where agents don’t trade in equilibrium.

These no-trade equilibria are presented in Section 3. No-trade is too strong an assumption

for models where the endogeneity of the amount of insurance (or self-insurance) is key for the

economic problems under investigation. Section 4 presents a alternative class of models with

small-heterogeneity where heterogeneity is preserved only for a subgroup of agents. Section 5

presents a general approach to reducing heterogeneity in incomplete insurance market models.

In a nutshell, this theory is based on truncations of idiosyncratic histories, which endogenously

delivers a finite (but arbitrarily large) number of different agents. Section 6 discusses the deriva-

tion of optimal policies in these environments. Section 7 discusses the relationship between the

reduced-heterogeneity approach of this chapter and other methods using perturbation methods.

Section 8 discusses the possible use of reduced-heterogeneity approaches for models not using

rational expectations, such as Agent-Based Models. Section 9 concludes. Empirical strategies to

discipline and discriminate among the general class of heterogeneous-agent models are discussed.

2 The economic problem and notations

2.1 The model

Time is discrete, indexed by t ≥ 0. The aggregate risk is represented1 by state variables ht ∈ RN

in each period t. Typically, ht can be the level of technology, the amount of public spending,

and so on. It is assumed to be N -dimensional for the sake of generality. Key to the methods

described below is the fact that ht is continuous to allow for perturbation methods. We will

indeed solve for small variations in ht or, in other words, for small changes in the aggregate state

of the world. The idea is the same as linearizing a model around a well-defined steady-state
1More formally, the aggregate risk is represented by a probability space (S∞, F ,P). See Heathcote (2005) or

Miao (2006) for a more formal presentation.
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for a representative agent model. It will always be possible to take higher-order approximation,

but usually a first-order approximation (linearizing the model) is enough to obtain key insights.

The history of aggregate shocks up to period t is denoted ht = {h0, ..., ht}.

Agents’ problem

The specificity of heterogeneous agent models is that, on top of aggregate risk, each agent

faces uninsurable idiosyncratic risk, such that they will differ as time goes by, according to the

realization of their idiosyncratic risk. More formally, assume that there is a continuum of length

1 of agents indexed by i.

Agents face time-varying idiosyncratic risk. At the beginning of each period, agents face

an idiosyncratic labor productivity shock et ∈ E ≡ {e1, .., eE} that follows a discrete first-order

Markov process with transition matrixM(ht), which is a E×E Markov matrix. The probability

Me,e′(ht), e, e′ ∈ E is the probability for an agent to switch from individual state et = e at date

t to state et+1 = e′ at date t + 1, when the aggregate state is ht in period t. At period t,

et = {e0, ..., et} ∈ E(t+1) denotes a history of the realization of idiosyncratic shocks, up to time

t. The fact that the idiosyncratic state space is discrete is crucial for the methods presented

below, but it is not restrictive for the application found in the literature. The idiosyncratic

states considered are often employment-unemployment or a 2-state endowment economy (as in

Huggett (1993)), or different idiosyncratic productivity levels to match the empirical process of

labor income (Heathcote (2005) use a 3-state process, Aiyagari (1994) uses a 7-state process).

More generally, any continuous first-order process can be approximated by a discrete process,

using the Tauchen (1986) procedure.

In what follows, and without loss of generality, I will consider a two-state process where

agents can be either employed, when et = 1, or unemployed, when et = 0. In this latter case,

the agent must supply a quantity of labor δ for home production to obtain a quantity of goods δ:

the labor choice is constrained. The probability to stay employed is denoted αt ≡M1,1(ht), thus

1−αt is the job-separation rate. The probability to stay unemployed is denoted as ρt ≡M0,0(ht),

such that 1− ρt is the job finding rate in period t.

Agents have a discount factor β and a period utility function U(c, l), which is increasing in

consumption c and decreasing in labor supply l. In addition U is twice-differentiable and has

standard concavity properties for consumption.

Market structure. Agents can’t buy assets contingent on their next-period employment
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status (otherwise, they could buy some insurance), but can only save in an “aggregate” asset,

whose return depends only on the history of the aggregate states ht.

The typical problem of an agent facing incomplete insurance markets is the following

max
(ait+1,c

i
t)t≥0

E0
∑∞
t=0 β

t U
(
cit, l

i
t

)
(1)

ait+1 + cit = eitwtl
i
t + (1− eit)δ + (1 + rt)ait, for all eN ∈ EN , (2)

cit, l
i
t ≥ 0, ait ≥ −ā, for all eN ∈ EN , (3)

ai0 are given, (4)

where wt is the wage rate in period t and rt is the return on saving between period t − 1 and

period t. ait+1 is the saving of agent i in period t, and cit, lit are respectively the consumption and

labor supply of agent i in period t. More rigorously, aggregate variables should be understood

as a function of the history of aggregate shock ht, thus as r(ht) and w(ht), whereas idiosyn-

cratic variables should be understood as functions of both aggregate and idiosyncratic histories,

as ait+1(ei,t, ht) for instance. The decisions in each period are subject to the non-negativity

constraints (3). Importantly, agents can’t borrow more than the amount ā in each period.

Production

Markets are competitive and a representative firm produces with capital and labor. The

production function is Yt = AtK
λ
t L

1−λ
t +(1−µ)Kt, where µ is the capital depreciation rate, and

At is the technology level, which is affected by technology shocks. The first-order conditions of

the firm imply that factor prices are

rt + µ = λAtK
λ−1
t L1−λ

t

and

wt = (1− λ)AtKλ
t L
−λ
t

where Kt is the aggregate capital stock and Lt is the aggregate labor supply.

The technology shock is defined as the standard AR(1) process At ≡ eat , with

at = ρaat−1 + εat
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with εat ∼ N
(
0, (σa)2

)
.

2.2 Equilibrium definition and intuition to reduce the state space

We can provide the equilibrium definition and the main idea to reduce the state space. First, in

the general case, as time goes by, there is an increasing number of different agents, due to the

heterogeneity in idiosyncratic histories. Instead of thinking in sequential terms (i.e. following the

history of each agent from period 0 to any period t), Huggett (1993) and Aiyagari (1994) have

shown that the problem can be stated in recursive form, if ones introduces an infinite-support

distribution as a state variable, when there are no aggregate shocks2.

Indeed, define as Ft : [−ā; +∞) × {0, 1} → R+ the cross-sectional cumulative distribution

over capital holdings and idiosyncratic states in period t. For insntance, F (d, 1) is the mass of

employed workers having a wealth level less than d at the beginning of period t. In the general

case, an equilibrium of this economy is 1) a policy rule for each agent solving its individual

maximization problem, 2) factor prices that are consistent with the firm first-order conditions,

3) financial and labor markets clear for each period t ≥ 0 :

ˆ
at+1(a, e)dFt(a, e) = Kt+1 (5)

where at+1(a, e) is the saving in period t of a household having initial wealth a and being in

state e ∈ {0, 1}, and ˆ
lt(a, e)dFt(a, e) = Lt (6)

and finally 4) a law of motion for the cross-sectional distribution Ft that is consistent with

the agents’ decision rule at each date. This law of motion can be written as (following the

notation of Algan et al. (2014))

Ft+1 = Υ (ht+1, ht, Ft)

The literature on heterogeneous-agent models has tried to find solution techniques to ap-

proximate the very complex object Υ , which maps distribution and shocks into distributions

(Den Haan 2010 for a presentation and discussion of differences in methods).
2The structure of the recursive equilibrium with aggregate shocks is still an open theoretical question. See

Miao (2006) for a discussion. This difficulty will not exist for the class of equilibria presented in this chapter, so
I don’t discuss this issue.
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The basic idea. The basic idea for reducing the state space is first to go back to the

sequential representation. If at any period t, only the last N periods are necessary to know the

wealth of any agent, then only the truncated history eN,t = {et+1−N , ..., et} ∈ EN is necessary

to “follow” the whole distribution of agents, in a sense made clear below. In this economy, there

are only 2Ndifferent agents at each period, instead of a continuous distribution. This number

can be large, but it is finite and all standard perturbation techniques can be applied.

The next Section presents different types of equilibria in the literature. The first one is the

no-trade equilibrium where N = 1, the second one is the reduced-heterogeneity equilibrium and

the last one is the general case for arbitrary N .

3 No-trade equilibria

3.1 No-trade equilibria with transitory shocks

A first simple way to generate a tractable model is to consider environments that endogenously

generate no-trade equilibria with transitory shocks. This class of equilibrium was introduced

by Krusell, Mukoyama and Smith (2011) to study asset prices with time-varying idiosyncratic

risk. Recent developments show that they can be useful for macroeconomic analysis. Indeed,

this equilibrium structure can be applied to a subgroup of agents.

3.1.1 Assumptions

These equilibria are based on two assumptions. First, assets are in zero net supply and produc-

tion only necessitates labor (λ = 0 in the production function) . The first consequence is that

the total amount of saving must be equal to the total amount of borrowing among households.

The second consequence is that the real wage is only the technology level in each period wt = At.

Second, it is assumed that the borrowing limit is 0, ā = 0. As agents can’t borrow, there are

no assets in which agents can save: ait = 0 for all agents i in any period t. These equilibria are

not interesting for generating a realistic cross-section of wealth, but they can be interesting to

investigate the behavior of the economy facing time-varying uninsurable risk. Indeed, the price

of any asset is determined by the highest price than any agent is willing to pay.

Denoting {1} the employed agents and {0} the unemployed agents, one can now state the

problem recursively. The value functions for employed and unemployed agents are (I write
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these functions with the time index to facilitate the reading, although it is not necessary in this

recursive formulation).

V (at, ht, {1}) = max ct,lt,at+1U(ct, lt) + βE (αt+1V (at+1, ht+1, {1}) + (1− αt+1)V (at+1, ht+1, {0}))

at+1 + ct = Atlt + at(1 + rt)

at+1 ≥ 0

and

V (at, ht, {0}) = max ct,at+1U(ct, δ) + βE (ρt+1V (at+1, ht+1, {0}) + (1− ρt+1)V (at+1, ht+1, {1}))

at+1 + ct = δ + at(1 + rt)

at+1 ≥ 0

where the expectation operator E is taken for the aggregate shock h only.

As no agent can save, we have at+1 = 0 for all agents, and one can thus see that all employed

agents consume c1,t = Al1,t and supply the same quantity of labor l1,t, whereas unemployed

agents simply consume c0,t = δ and the labor supply is obviously given by l0,t = δ.

The equilibrium can be derived using a guess-and-verify structure. Indeed, for general values

of the parameters derived below, unemployed agents are credit-constrained: they would like to

borrow, and employed agents would like to save. As a consequence, they are the marginal buyer

of the asset (although in zero-net supply) and make the price.

Deriving the first-order conditions of the previous program and then using these values, one

finds

AtUc(c1,t, l1,t) = −Ul(c1,t, l1,t)

Uc(c1,t, l1,t) = βE (1 + rt+1) (αt+1Uc(c1,t+1, l1,t+1) + (1− αt+1)Uc(c0,t+1, δ))

and the conditions for unemployed agents to be credit-constrained at the current interest rate is

Uc(c0,t, δ) > βE (1 + rt+1) (ρt+1Uc(c0,t+1, δ) + (1− ρt+1)Uc(c1,t+1, l1,t+1))

Specification of the functional forms
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Assume that 
U(c, l) = c1−σ−1

1−σ − χ l
1+ 1

φ

1+ 1
φ

if σ 6= 1

U(c, l) = log(c)− χ l
1+ 1

φ

1+ 1
φ

if σ = 1

σ is the curvature of the utility function (not directly equal to risk aversion to the endogenous

labor supply), and φ is the Frisch elasticity of labor supply, ranging from 0.3 to 2 in applied

work (see Chetty et al. (2011) for a discussion). χ is a parameter scaling the supply of labor in

steady state. With this specification one finds

Atc
−σ
1,t = χl

1
φ

1,t

c−σ1,t = βE (1 + rt+1)
(
αt+1c

−σ
1,t+1 + (1− αt+1)δ−σ

) (7)

and the conditions for unemployed agents to be credit-constrained at the current interest rate is

δ−σ > βE (1 + rt+1)
(
ρt+1δ

−σ + (1− ρt+1)c−σ1,t+1

)

From the budget constraint of employed agents c1,t = Atl1,t and the labour choice in (7), we

obtain

c1+φσ
1,t = A1+φ

t /χφ

The technology process is the following

At = eat

where at is an AR(1) process specified above.

Assume that three shocks hit the economy: A shock to the technology level, at, a shock to

the probability to stay employed αt and a shock to the probability to stay unemployed ρt, which

are AR(1) processes. More formally,


at

αt − ᾱ

ρt − ρ̄

 =


ρa 0 0

0 ρα 0

0 0 ρρ




at−1

αt−1 − ᾱ

ρt−1 − ρ̄

+


εat

εαt

ερt


where the innovations εat , εαt and ερt are white noise with standard deviation equal to σa, σα and σρ
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respectively, N
(
0, (σa)2

)
,N

(
0, (σα)2

)
,N

(
0, (σρ)2

)
. In the previous processes, the covariation

between the exogenous shocks are 0, but alternative specifications are easy to introduce. The

steady-state value of αt is ᾱ and the steady-sate level of ρt is ρ̄.

Steady state. To use perturbation methods, we first solve for the steady sate and then

consider first-order deviation from the steady state. In steady state A = 1, and we get from the

two equations in (7),

c1 = χ
− φ

1+σφ (8)

and

1 + r = 1
β

(
ᾱ+ (1− ᾱ)

(
δ

c1

)−σ)−1

Putting in some numbers allows estimating the order of magnitude. Consider the period to be

a quarter. The previous equality shows that the effect of uninsurable risk on the interest rate

is the consumption inequality between employed and unemployed agents (irrespective of labor-

supply elasticity for instance). Chodorow-Reich and Karabarbounis (2014) estimate a decrease

in consumption of non-durable goods of households falling into unemployement between 10%

and 20%. As a consequence, one can take the conservative value δ
c1

= 0.9. The quarterly job

loss probability is roughly 5% and α = 0.95 (see Challe and Ragot (2014) for a discussion),

and the discount factor is β = 0.99. One finds a real interest rate r = 0.45% for σ = 1, and

r = −0.002 when σ = 2.. In the complete market case, we have α = 1 and 1 + r = 1/β. We find

r = 1%. As iw well kown, market incompleteness contributes to a smaller steady-state interest

rate compared to the complete market case ( Aiyagari 1994 for a discussion).

3.2 Preserving time-varying precautionary saving in the linear model

The effect of time-varying precautionary saving is preserved in the linear model for all the

environments studied in this chapter. This is best understood in this simple framework. I note

x̂ the proportional deviation of the variable x and ỹ the level deviation of variables y (applied

typically to interest rate and transition probabilities). For instance, c1,t = c1 (1 + ĉ1,t) and

αt = α+ α̃t. Linearizing the Euler equation in (7), one finds that

ĉ1,t = µ1Eĉ1,t+1 + µ2Eα̃t+1 −
1
σ
Er̃t+1 (9)
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where

µ1 = αβ (1 + r) and µ2 = β (1 + r)
σ

(
δ−σ − c−σ1

c−σ1

)

With the values given above, one finds µ1 = 0.94 and µ2 = 0.1, when σ = 1. To give an order

of magnitude, an increase in 10% in the expected job-separation rate (a decrease in α) has the

same effect as an increase of 1% in the real interest rate. A second key implication is the value

of µ1 < 1 in front of Eĉ1,t+1. This has dramatic implications for monetary policy compared to

the complete market case, where we have µ1 = 1. These implications are studied by McKay et

al. (2016) in this type of environment, to study forward guidance.

One can see that the probability to stay employed αt has a first-order effect on the con-

sumption decision in (9) when markets are incomplete. The reason for this result is that we are

not linearizing around a riskless steady state. We are linearizing around a steady state where

idiosyncratic risk is preserved. As a consequence, there are two different marginal utilities that

agents can experience in the steady state : either c−σ1 if employed, or δ−σ if unemployed. As

a consequence, the term δ−σ−c−σ1
c−σ1

in µ2 represents the lack of insurance in steady state. This

term scales the reaction of consumption to changes in the idiosyncratic probability to switch

employment status. In the complete market case, we obviously have µ2 = 0.

Linearizing the labor-supply equation, one finds ĉ1,t = 1+φ
1+φσat. Plugging this expression into

(9), one finds that the value of the interest rate is pinned down by the shocks (using Eα̃t+1 = ραα̃t

and Eat+1 = ρaat):

Er̃t+1 = σµ2ρ
αα̃t − σ 1+φ

1+φσ (1− µ1ρ
a) at

One observes that an increase in the uncertainty (decrease in α̃t) generates a fall in the

expected real interest rate. Indeed, employed agents want to self-insure more in this case, and

they accept a lower remuneration of their savings. An increase in productivity (at) also decreases

the expected real interest rate, as agents also want to self-insure more to transfer income from

today to the next-period state of the world where they are unemployed.

These no-trade equilibria are extreme representations of market incompleteness, as the con-

sumption levels are exogenous. They can nevertheless be useful in DSGE models. For instance,

Ravn and Sterck (2013) use the same trick to study an incomplete-insurance market model where

households can be either employed or unemployed. The simplification on the households side

allows to enrich the production side and to consider sticky prices, introducing quadratic costs of
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price adjustment à la Rotemberg (1982), search-and-matching frictions on the labor market and

downward nominal wage rigidities. In this environment, Ravn and Sterck consider two types

of unemployed workers who differ in their search efficiency and therefore in their job-finding

probabilities. They use this model to account for changes in the US labor market after the great

recession. They focus in particular on the distinction of shifts in the Beveridge and of move-

ments along the Beveridge curve. Werning (2015) uses this model to derive theroretical results

about the effect of market incompleteness. Challe (2017) uses a no-trade equilibrium to ana-

lyze optimal monetary policy with sticky prices on the goods market and search-and-matching

frictions on the labor market. He shows that optimal monetary policy reaction is more expan-

sionary after a cost-push shock when markets are incomplete (compared to the complete market

environment), because there are additional gains to reduce unemployment when markets are

incomplete. McKay and Reis ((2016a) analyze optimal time-varying unemployment insurance

using this setup.

3.3 No-trade equilibrium with permanent shocks

A second line of literature to generate tractable no-trade equilibria is based on the Constantinides

and Duffie (1996) environment. These authors consider permanent idiosyncratic risk (instead of

transitory risk as in the previous framework) and show that one can study market allocations and

asset prices with no-trade. Recently, Heathcote, Storesletten and Violante (2014) generalized

this framework to quantify risk-sharing and to decompose inequality into life-cycle shocks versus

initial heterogeneity in preferences and productivity. Closed-form solutions are obtained for

equilibrium allocations and for moments of the joint distribution of consumption, hours, and

wages.

These no-trade equilibria are useful to provide a first quantification of new mechanisms

generated by incomplete insurance markets. Nevertheless, they can’t consider the macroeco-

nomic effect of changes in savings after aggregate shocks. Small-heterogeneity models have been

developed to consider this important additional channel in tractable environments.
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4 Small-heterogeneity models

Small-heterogeneity models are classes of equilibria where agents do save but where the equilib-

rium distribution of wealth endogenously features a finite state space. Three classes of equilibria

can be found in the literature. Each type of equilibrium has its own merit according to the ques-

tion under scrutiny. I present the first one in detail, and the two others more rapidly, as the

algorithms to solve for the equilibrium are very similar. The last class of equilibrium may be

more suited for quantitative analysis, as the conditions for the equilibrium to exist are easier to

check.

4.1 Models based on assumptions about labor supply

4.1.1 Assumptions

The first class of equilibria is based on two assumptions.

First, it is assumed that agents choose their labor supply when employed and that the

disutility of labor supply is linear. If c is consumption and l is labor supply, the period utility

function is

U(c, l) = u(c)− l

The implication of this assumption is that the first-order condition for labor supply pins

down the marginal utility of consumption of employed agents. This assumption is used in

Scheikman and Weiss (1986) and in Lagos and Wright (2005) to simplify heterogeneity in various

environments.

The second assumption is that the credit constraint is tighter than the natural borrowing

limit

ā > −δ/r (10)

where r is the steady-state interest rate. This concept is introduced by Aiyagari (1994), and it is

the loosest credit constraint, which ensures that consumption is always positive. The implication

of this assumption is that unemployed agents will hit the credit constraint after a finite number

of periods of unemployment. This property is key to reduce the state space, and we discuss it

below.
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4.1.2 Equilibrium structure

To simplify the exposition, the equilibrium is presented using a guess-and-verify strategy. For

the sake of clarity, the time index is kept to variables (although not necessary in the recursive

exposition). Assume that all employed agents consume and save the same amount in each

period t, c0,t and a0,t+1 respectively. In addition, assume that all agents unemployed for k

periods consume and save the same amount, denoted, ck,t and ak,t+1, for k ≥ 1 respectively.

In addition, assume that agents unemployed for L periods are credit-constrained, and that this

number is not time-varying (L is an equilibrium object). This last assumption is important and

will be justified below.

Denote as Vk(at, Xt) the value function of agents in state k = 0, 1, ... (0 is employed agents,

here), where Xt is the set of variables specified below thar are necessary to form rational expec-

tations3.

We have for employed people

V0(at, Xt) = maxc0,t,a0,t+1lt u(c0,t)− lt + βE (αt+1V0(a0,t+1, Xt+1) + (1− αt+1)V1(a0,t+1, Xt+1))

a0,t+1 + c0,t = wtlt + at(1 + rt)

a0,t+1 ≥ −ā

and for all unemployed people, k ≥ 1

Vk(at, Xt) = max u(ct)− δ + βE (ρt+1V0(ak,t+1, Xt+1) + (1− ρt+1)Vk+1(ak,t+1, Xt+1))

ak,t+1 + ck,t = δ + at(1 + rt)

ak,t+1 ≥ −ā

As credit constraints bind for agents unemployed for k ≥ L periods, we have for these agents

ak,t+1 = −ā.

We can derive the set of first-order conditions. For employed agents

u′(c0,t) = 1/wt
u′(c0,t) = βE(1 + rt+1) (αt+1u

′(c0,t+1) + (1− αt+1)u′(c1,t+1))

3We introduce the time subscript in the recursive formulation to ease the understanding of the timing of the
model.
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For unemployed agents, for k = 1...L− 1.

u′(ck,t) = βE(1 + rt+1)
(
ρt+1u

′(ck+1,t+1) + (1− ρt+1)u′(c0,t+1)
)

Note that when L = 1, such that the credit constraints bind after one period of unemploy-

ment, then the previous equations don’t exist. This case is studied more precisely below.

The conditions define a system of 2(L+ 1) equations.

1/wt = βE(1 + rt+1) (αt+1/wt+1 + (1− αt+1)u′(c1,t+1)) ,

u′(ck,t) = βE(1 + rt+1) (ρt+1u
′(ck+1,t+1) + (1− ρt+1)/wt+1) , for k = 1..L− 1

ak,t+1 + ck,t = δ + ak−1,t(1 + rt), for k = 1..L

u′(c0,t) = 1/wt
aL,t = −ā

These equations form a system in the 2(L + 1) variables (ck,t, ak,t)k=0..L. These equations

confirm the intuition that all employed agents consume and save the same amount.

How is this possible? This comes from the labor choice, which provides some insurance.

Indeed, as soon as an unemployed agent for k period in period t−1 becomes employed in period

t, then they work the necessary amount, denoted as lk0,t to consume c0,t. This amount is given

by the budget constraint of employed households

lk0,t = (a0,t+1 + c0,t − ak,t(1 + rt)) /wt, k = 0, .., L− 1

lk0,t = (a0,t+1 + c0,t + ā(1 + rt)) /wt, k = L, ..,∞
(11)

(The previous equation is indeed valid for k = 0). Finally, note that for agents k ≥ L + 1, we

simply have, from the budget constraint

ck,t = δ − rtā

Thanks to the assumption about the credit constraint given by (3) and the assumption of small

aggregate shocks (to use perturbation methods), this amount will be positive.

This almost concludes the description of the agent’s decision. The last step is to follow the

number of employed and of each type of unemployed agent. Denote as nk,t the number of agents
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in state k = 0, .., L in each period t. We have the law of motion of each type of agent

n0,t = αtn0,t−1 + (1− ρt)(1− n0,t−1)

nk,t = ρtnk−1,t−1, for k = 1, ...,∞

The first equation states that the number of employed agents is equal to the number of employed

agents who keep their job (first) term, plus the number of unemployed agents, which is 1−n0,t−1,

who find a job. The second equation states that the number of agents unemployed for k periods

at date t, are the number of agents unemployed for k− 1 periods at the previous date who stay

unemployed.

The number of k0 agents (i.e. employed agents at date t, who were unemployed for k periods

at date t− 1) is

nk0,t = (1− ρt)nk,t−1

The number of credit-constrained agents is denoted as nct and is simply

nct = 1−
L−1∑
k=0

nk,t

In this equilibrium, the capital market equilibrium is simply

Kt =
L−1∑
k=0

nk,tak,t − nct ā

and

Lt =
L−1∑
k=0

nk0,tlk0,t + (1− ρt)nct−1lL0,t

Here we used the fact that all constrained agents work the same amount when they find a job,

due to condition (11).

Due to this assumption, the marginal utility of all employed agents is u′(ct) = 1/wt in all

periods. As a consequence, this marginal utility does not depend on the history of agents on

the labor market, what considerably simplifies the equilibrium structure.

17



4.1.3 The system

We can now present the whole system of equations :

1/wt = βE(1 + rt+1)
(
αt+1/wt+1 + (1− αt+1)u′(c1,t+1)

)
,

u′(ck,t) = βE(1 + rt+1)
(
ρt+1u

′(ck+1,t+1) + (1− ρt+1)/wt+1
)
, for k = 1, ..., L− 1

ak,t+1 + ck,t = δ + ak−1,t(1 + rt), for k = 1, ..., L

u′(c0,t) = 1/wt

aL,t = −ā

lk0,t = (a0,t+1 + c0,t − ak,t(1 + rt)) /wt, for k = 0, .., L− 1

lL0,t = (a0,t+1 + c0,t + ā(1 + rt)) /wt,

n0,t = αtn0,t−1 + (1− ρt)(1− n0,t−1)

n1,t = (1− αt)n0,t

nk,t = ρtnk−1,t−1, for k = 2, ..., L− 1

n00,t = αtn0,t

nk0,t = (1− ρt)nk,t−1, for k = 1, ..., L− 1

nct = 1−
L−1∑
k=0

nk,t

Kt =
L−1∑
k=0

nk,tak,t − nct ā

Lt =
L−1∑
k=0

nk0,tlk0,t + (1− ρt)nct−1lL0,t

rt = λAtK
λ−1
t L1−λ

t − µ

wt = (1− λ)AtKλ
t L
−λ
t

This system is large but finite. There are 5L+ 8 equations for 5L+ 8 variables

((ck,t, ak,t+1, lk0,t)k=0,..,L, (nk,t, nk0,t)k=0,..,L−1, n
c
t ,Kt, Lt, rt, wt)t=0...∞ . For any process for

the exogenous shocks (αt, ρt, At) one may think that it is possible to simulate this model. This

is not the case because one key variable is not determined: L.

18



4.1.4 Algorithm : Finding the value of L

The value of L can be found using steady-state solutions of the previous system. The idea is

to find the steady-state for any L and iterate over L to find the value for which L agents are

credit constrained, whereas L− 1 agents are not. The algorithm to find L and the steady state

is the following (finding the steady state is not difficult because the problem is block-separable).

I simply drop the time subscript to denote steady-state values.

Algorithm

1. Take L ≥ 1 as given.

(a) Take r as given.

i. From r deduce w using the FOCs of the firms.

ii. Solve for the consumption of agents ck=0...L using the Euler equations of the

agents, from k = 1 to k = L.

iii. Solve for the saving of the agents from aL down to a0 using the budget constraint

of all agents, and the values ck=0...L.

iv. Solve for the labor supply of employed agents lk0 k = 0, ..., L.

v. Solve for the share of agents nk, nk0 for k = 0, ..., L− 1 and nc.

vi. Find the aggregate capital stock K.

(b) Iterate over r, until the financial market clears, i.e. until r = λKλ−1L1−λ − µ.

2. Iterate over L, until

aL−1 > −ā

u′(cL) > β(1 + r) ((1− ρ̄)u′(c0) + ρu′(cL+1))
(12)

where cL+1 = δ − rā.

4.1.5 Simulations

Once the steady-state value of L and the steady-state value of the variables are determined,

one can simulate the model using standard perturbation methods. One can use DYNARE to

simulate first and second approximations of the model, compute second moments and so on.
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The distribution of wealth is summarized by the vector (nk,t, ak,t)k=0,..,L−1 and belongs to the

state space of agents Xt to form rational expectations. In these simulations, one has to check

that the aggregate shock is small enough such that L is indeed constant over time. One must

thus check that the condition (12) is satisfied not only in the steady state but also during the

simulations.

4.1.6 References and limits

In the Bewley-Huggett-Aiyagari environment, Algan, Challe and Ragot (2011) use this frame-

work to investigate the impact of money injections in a model where agents use money to

self-insure against idiosyncratic shocks. Challe, Le Grand and Ragot (2013) use this assumption

to study the effect of an increase in public debt on the yields curve in an environment where

agents use safe assets of various maturities to self-insure against idiosyncratic risk. They show

that an increase in idiosyncratic risk decreases both the level and the slope of the yield curve. In

addition, an increase in public debt increases both the level and the slope of the yield curve. Le

Grand and Ragot (2016a) use this assumption to consider insurance for aggregate risk in these

environments. Introducing derivative assets, such as options, in an environment where agents

use a risky asset to self-insure against idiosyncratic risk, they show that the time-variations in

the volume of traded derivative assets are consistent with empirical findings.

This framework is interesting to investigate the properties of time-varying precautionary sav-

ing in finance (for instance to study asset prices) but it is not well suited for the macroeconomy.

Indeed, the elasticity of labor supply is much too high compared to empirical findings (the Frisch

elasticity is here infinite, whereas it is between 0.3 and 1 in the data, see Chetty et al. (2011)

for a discussion). In addition, all employed agents consume the same amount, which is pinned

down by the real wage, which is obviously a counterfactual. For this reason, other frameworks

with positive trade have been developed.

4.2 Models based on linearity in the period utility function

Challe and Ragot (2014) present an alternative environment, consistent with any value of the

elasticity of the labor supply. This framework can thus be used in macroeconomic environments

to model time-varying movements in inequality. We describe the empirical relevance and the

modeling strategy in Section 4.2.3 after the presentation of the model.
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4.2.1 Assumptions

The model relies on three assumptions.

First, instead of introducing linearity in the labor supply, the linearity is in the utility of

consumption. More precisely, it is assumed that there exists a threshold c∗ such that the period

utility function is strictly concave for c < c∗ and linear for c ≥ c∗. The linear-after-a-threshold

utility function was introduced by Fishburn (1977) in decision theory to model behavior in front

of gains and losses differently.

The period utility function is thus

ũ′(c) =


u′(c) if c < c∗,

η if c∗ ≤ c,
(13)

where the function u(.) is increasing and concave. The slope of the utility function must be low

enough to obtain global concavity, that is u′(c∗) > η.

Second, the borrowing limit is assumed to be strictly higher than the natural borrowing

limit, as before.

Third, it is assumed that the discount factor of agents is such that all employed agents

consume an amount ct > c∗and all unemployed agents consume an amount ct < c∗.

4.2.2 Equilibrium structure

To save some space, we now focus on the households’ program. Assume that labor is inelastic as

a useful benchmark (introducing elastic labor is very simple in this environment). All employed

agents supply one unit of labor.

We have for employed people

V0(at, Xt) = maxc0,t,a0,t+1lt ũ(c0,t)− 1 + βE (αt+1V0(a0,t+1, Xt+1) + (1− αt+1)V1(a0,t+1, Xt+1))

a0,t+1 + c0,t = wt + at(1 + rt)

a0,t+1 ≥ −ā
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and for all unemployed people, k ≥ 1

Vk(at, Xt) = max ũ(ct)− δ + βE (ρt+1V0(ak,t+1, Xt+1) + (1− ρt+1)Vk+1(ak,t+1, Xt+1))

ak,t+1 + ck,t = δ + at(1 + rt)

ak,t+1 ≥ −ā

One can solve for the order conditions following the same steps as before. Using the same

notations as in the previous Section, denote as k agents the agents unemployed for k periods.

Assuming that credit constraints are binding after L periods of unemployment, one can find

consumption and saving choices.

The key difference between this environment and the one presented in the previous Section

is that employed agents will not differ according to their labor supply (which is inelastic), but

by their consumption level. Denote as ck0,t the consumption at date t of employed agents who

were unemployed for k periods at date t− 1, and denote (as before) as ck,t (for k = 1, ..., L) the

consumption of unemployed agents who are unemployed for k periods at date t. The households

are now described by the the vector (ak,t, ck0,t)k=0,...,L and (ck,t)k=1,...,L solving

η = βE(1 + rt+1) (αt+1η + (1− αt+1)u′(c1,t+1)) ,

u′(ck,t) = βE(1 + rt+1) (ρt+1u
′(ck+1,t+1) + (1− ρt+1)η) , for k = 1, ..., L− 1

ak,t+1 + ck,t = δ + ak−1,t(1 + rt), for k = 1, ..., L

a0,t+1 + ck0,t = wt + ak,t(1 + rt), for k = 0, ..., L

aL,t = −ā

One can check that this is a system of 3L+ 2 equations for 3L+ 2 variables. The number of

each type of agent can be followed as in the previous Section.

One may find this environment more appealing than the one in the previous Section, as it

does not rely on an unrealistic elasticity of labor supply. The problem is nevertheless that there

are additional conditions for the equilibrium existence that limit the use of such a framework.

Indeed, one has first to solve for steady-state consumption and savings for each type of agent,

and for the steady-state value of L using the algorithm described in Section 4.1.4, and then one

has to check the following ranking condition:
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Condition

c1 < cL0

The previous condition is that the highest steady-state consumption of unemployed agents

is lower than the lowest steady-state consumption of employed agents. Indeed, the consumption

of households just becoming unemployed (and thus being employed in the previous period) c1 is

the highest consumption of unemployed agents, because consumption is falling with the length

of the unemployment spell. Moreover, the consumption of employed agents who were at the

credit constraint in the previous period, cL0, is the lowest consumption level of employed agents,

because these agents have the lowest beginning-of-period wealth −ā. If the condition is fulfilled,

one can always find a threshold c∗ such that the period utility function is well behaved.

This framework can nevertheless be used in realistic dynamic models when applied to a

subgroup of the population.

4.2.3 Using reduced heterogeneity to model wealth inequality over the business

cycle

Challe and Ragot (2014) apply the previous framework to model the bottom 60% of US house-

holds, based on the following observation. The wealth share of the poorest 60% of households

in terms of liquid wealth is as low as 0.3%. Indeed, as the model is used to model precautionary

saving in the business cycle, one should indeed focus on the net worth, which can readily be

used for the short-run change in income. Define the period to be a quarter.

The modeling strategy is the following. Challe and Ragot (2014) model the top 40% of the

households by a family, that can fully insure its members against unemployment risk. This

family has a discount factor βP for patient and it has thus a standard Euler equation (without

the employment risk, which is insured).

u′(cPt ) = βPE(1 + rt+1)u′(cPt+1)

As a consequence, the bottom 60% is modeled by agents having a quasi-linear utility function

and having a lower discount factor, denoted as βI < βP (I for impatient, P for patient). With

such a low wealth shares of 0.3% (a few hundred dollars of savings), it is easy to show that the
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households spend all their saving after a quarter of unemployment. This implies that one can

construct an equilibrium for the bottom, where L = 1. In other words, these households face

the credit constraint after one period (one quarter) of unemployment.

The inter-temporal choice of employed agents can be simply written as

η = βIE(1 + rt+1)
(
αt+1η + (1− αt+1)u′(δ + a0,t+1(1 + rt+1) + ā)

)
,

where we used the fact that c1,t+1 = δ + a0,t+1(1 + rt+1) + ā.

One can linearize the previous equation to obtain a simple saving rule. Level-deviations from

the steady state are denoted with a tilda, as before. Linearization gives

ã0,t+1 = ΓsEα̃t+1 + ΓrEr̃t+1

where Γs,Γr are coefficients that depend on parameter values. One can show that Γs < 0,

because agents facing a higher probability to stay employed decrease their precautionary savings.

The coefficient Γr can be either positive or negative depending on parameter values, and on

income and substitution effects.

Due to the saving rule, the model differs from hand-to-mouth DSGE models in the tradition

of Kyotaki and Moore (1997). In the previous model, the number of credit-constrained agents is

very low, as households at the constraint are the fraction of impatient agents who are unemployed

and not the full population of impatient agents. Finally, the conclusion of this model that

poor households (the bottom 60% of the wealth distribution) react more to the unemployment

risk than rich households is confirmed by household data (see Krueger at al. (2015)). As a

consequence, this framework is empirically more relevant than the no-trade equilibria presented

above, or hand-to-mouth models following the seminal paper of Kyotaki and Moore (1997).

Finally, Challe and Ragot (2014) show that this model does a relatively good job in repro-

ducing time-varying precautionary saving (compared to Krusell and Smith (1998)), and that the

model is not more complicated than a standard DSGE model. In particular, it can be solved

easily using DYNARE.
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4.2.4 Other references and remarks

Le Grand and Ragot (2016c) extend this environment to introduce various segments in the

period utility function to consider various types of agents. They apply this framework to show

that such a model can reproduce a rich set of empirical moments when limited participation in

financial markets is introduced. In particular, the model can reproduce the low risk free rate,

the equity premium the volatility of the consumption growth rate of the top 50% together with

hte aggregate volatility of consumption.

The use of a quasi-linear utility function provides (with the relevant set of assumptions) a

simple representation of household heterogeneity focusing on the poor households who indeed

face a higher unemployment risk. The cost of this representation is that the existence conditions

can be violated for big aggregate shocks or for an alternative calibration of the share of house-

holds facing the unemployment risk. As a consequence, this representation is not well-suited for

Bayesian estimation, as it is not sure that existence conditions are fulfilled for any samples. To

overcome this difficulty, other assumptions can be introduced.

4.3 Models based on a “family” assumption

The modeling strategy of previous models is based on the reduction of the state space by 1)

reducing heterogeneity among high-income agents and 2) setting the credit constraints at a level

higher than the natural borrowing limit (to be sure that low-income households reach the credit

limit in a finite number of periods). The two previous modeling strategies played with utility

functions to reach this goal. The last modeling strategy follows another route and considers

directly different market arrangements for any utility function. It will be assumed that there

is risk-sharing among employed agents. The presentation follows Challe, Matheron, Ragot and

Rubio-Ramirez (2016), but it is much simpler because we do not introduce habit formation.

4.3.1 Assumptions

The model is based on limited insurance (“or the family assumption”) often used in macro, but

applied to a subgroup of agents. Assume that all agents belong to a family. The family head

cares for all agents, but has a limited ability to transfer resources across agents. Indeed, the

planner can transfer resources across agents on the same islands, but it cannot transfer resources
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across islands. More specifically:

1) All employed agents are on the same islands, where there is full risk-sharing.

2) All unemployed agents for k periods live on the same island, where there is full risk-sharing.

3) A representative of the family head implements the consumption-saving choice in all

islands, maximizing total welfare.

4) The representative of the family head choose allocate wealth to households before knowing

their next-period employment status.

The structure can be seen as a deviation from Lucas (1990) to reduce heterogeneity among

employed agents. It will generate the same structure as the previous models: no heterogeneity

among employed agents and heterogeneous unemployed agents according to the length of their

unemployment spell.

4.3.2 Equilibrium structure

As before, we use a guess-and-verify strategy to present the model. Assume that the unemployed

agents reach the credit constraint after L consecutive periods of unemployment.

As before, denote as n0,t the number of employed agents at date t, and as nk,t the number

of agents unemployed for k ≥ 1 consecutive periods at date t. Denote as V f the value function

of the family head, and V k as the value function of households unemployed for k periods. First,

the value function of agents in the employed island is

V f
(
Aft , n0,t, Xt

)
= max

Sft+1,c0,t,lt

n0,tU(c0,t, lt) + βE
[
V f

(
Aft+1, n0,t+1, Xt+1

)
+ V 1 (a0,t+1, Xt+1)

]

c0,t+ a0,t+1 = wtlt + Aft
n0,t

(1 + rt)

Aft+1 = αt+1n0,ta0,t+1 + (1− ρt+1)
L−1∑
k=1

nk,tak,t+1 − (1− ρt+1)nct ā

Let’s explain this problem. The family head maximizes the utility of all agents in the employed

island (imposing the same consumption and labor choice on all agents to maximize welfare). The

head takes into consideration the fact that some employed agents will fall into unemployment

next period (and will have the value function V 1 which is the interteporal welfare of agents

unemployed for one period). The budget constraint is written in per capita terms: Per capita
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income is equal to per capita consumption and per capita savings, denoted as a0,t+1. At the

end of the period, all agents in the employed island have the same wealth, which is a0,t+1‘. As

the family head cannot discriminate between agents before they leave the island, this will be

the next-period beginning-of-period wealth of agents leaving the island, i.e.. just falling into

unemployment.

Finally, the next-period wealth of employed agents is the next-period pooling of the wealth

of agents staying or becoming employed. First, it sums the wealth of agents staying employed

αt+1n0,ta0,t+1, and the wealth of unemployed agents not at the credit constraint in period t and

finding a job in period t + 1, (1 − ρt+1)
∑L
k=1 nk,tak,t+1 , and the wealth of agents constrained

in period t and finding a job in period t + 1. These agents have a wealth −ā (recall that nct is

the number of agents at the credit constraint in period t).

The value function of unemployed agents for k periods is simpler

V k (ak−1,t, Xt) = max
ak,t+1,ck,t

nk,tU(ck,t, δ) + βE
[
V f

(
Aft+1, n0,t+1, Xt+1

)
+ V k+1 (ak,t+1, Xt+1)

]
ck,t + ak,t+1 = δ + ak−1,t(1 + rt)

ak,t+1 ≥ −ā

In this maximization, the representative of the family head in the island where agents are

unemployed for k periods takes into account the fact that they will affect the next-period wealth

of employed agents, because all agents belong to a whole family, and the wealth of agents

unemployed for k + 1 periods, in the next period. First-order and envelope conditions for

employed agents are

wtU1(c0,t, lt) = −U2(c0,t, lt)

U1(c0,t, lt) = βE
[
αt+1V

f
1

(
Aft+1, n0,t+1, Xt+1

)
+ 1
n0,t

V 1
1 (a0,t+1, Xt+1)

]
V f

1

(
Aft , n0,t, Xt

)
= (1 + rt)U1(c0,t, lt)

First-order and envelope conditions for unemployed agents are

nk,tU1(ck,t, δ) = βE
[
(1− ρt+1)nk,tV1

(
Aft+1, n0,t+1, Xt+1

)
+ V k+1

1 (ak,t+1, Xt+1)
]

V k
1 (ak−1,t, Xt) = (1 + rt)nk,tU1(ck,t, δ)
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Combining these equations (and using the fact that n1,t+1 = (1 − αt+1)n0,t, and nk+1,t+1 =

ρt+1nk,t), one finds the set of equations defining the agents’ choice.

U1(c0,t, lt) = βE(1 + rt+1) [αt+1U1(c0,t+1, lt+1) + (1− αt+1)U1(c1,t+1, δ)] (14)

U1(ck,t, δ) = βE(1 + rt+1) [(1− ρt+1)U1(c0,t+1, lt+1) + ρt+1U1(ck+1,t+1, δ)] , for k = 1, ..., L− 1

wtU1(c0,t, lt) = −U2(c0,t, lt) (15)

Aft+1 = αt+1n0,ta0,t+1 + (1− ρt+1)
L−1∑
k=1

nk,tak,t+1 − (1− ρt+1)nct ā

c0,t + a0,t+1 = wtlt + Aft
n0,t

(1 + rt) (16)

ck,t + ak,t+1 = δ + ak−1,t(1 + rt), for k = 1, ..., L

Given the prices rt and wt, this is a system of 2L+ 3 equations for the 2L+ 3 variables

((ck,t)k=0..L, (ak,t)k=0..L−1A
f
t , lt). The key result of this construction is that the Euler equa-

tions of employed and unemployed agents are the same as those obtained in a model with

uninsurable idiosyncratic risk. Indeed, using the law of large numbers (which is assumed to be

valid in a continuum), the “island” metaphor transforms idiosyncratic probabilities into shares

of agents switching between islands. The gain is that the state space is finite and the amount

of heterogeneity is finite, as there are only L+ 1 different wealth levels.

Note that the consumption of ck,t for k ≥ L+1 is ck,t = δ+ ārt because ak,t+1 = ā for k ≥ L.

The capital stock and total labor supply are simply

Kt =
L−1∑
k=0

nk,tak,t − nct ā

Lt = n0,tlt

Compared to the environments in Section 4.1 and in Section 4.2, the current equilibrium exhibits

less heterogeneity, as all employed agents consume and work the same amount. The gain is that

the period utility function can be very general.

4.3.3 Algorithm and simulations

The algorithm to find the steady state is the following.
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1. Guess a value for L ≥ 1.

2. Guess a value for r; From r deduce w using the FOCs of the firms.

3. Guess a value for c0; deduce the labor supply using (15).

(a) Solve for the consumption of agents ck=0...L using the Euler equations of the agents,

from c1 to cL.

(b) Solve for the saving of the agents from a0 to aL using the budget constraint of all

agents, and the values ck=0...L .

(c) Solve for the share of agents nk for k = 0, ..., L− 1 and nc.

(d) Find the aggregate capital stock K and aggregate labor L.

4. Iterate on r, until the financial market clears, i.e. until r = λKλ−1L1−λ − µ.

5. Iterate on L, until

aL−1 > −ā

u′(cL) > β(1 + r) ((1− ρ̄)u′(c0) + ρu′(cL+1))
(17)

where cL+1 = δ − rā.

The model is again a finite set of equations, which can be simulated using DYNARE. The

DYNARE solver could be used to double-check the values of the steady state.

4.3.4 Example of quantitative work

Challe, Matheron, Ragot and Rubio-Ramirez (2016) use this representation of heterogeneity to

construct a full DSGE model with heterogeneous agents. Indeed, the authors assume that only

the bottom 60% in the wealth distribution form precautionary saving, and that the top 40% can

be modeled by a representative agent.

They then introduce many other features to build a quantitative model, such as 1) sticky

prices, 2) habit formation (which complexifies significantly the exposition of the equilibrium), 3)

capital adjusment costs, 4) search-and-matching frictions on the labor market, and 5) stochastic

growth.
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The general model is then brought to the data using Bayesian estimations. The information

used in the estimation procedure includes thus the information set used to estimate DSGE

models. In addition, information about time-varying consumption inequalities across agents can

be used in the estimation process. The model is used to assess the role of precautionary saving

during the great recession in the US. The authors show that a third of the fall in aggregate

consumption can be attributed to time-varying precautionary saving due to the increase in

unemployment during this period.

The possibility to use Bayesian estimation is a clear strength of this class of model. Indeed,

as time-varying precautionary saving is preserved after linearization, the same techniques as in

the representative-agent DSGE literature can be used, but lots of new data about time-varying

moments of the distribution of income, wealth or consumption can be used to disciplined the

model. This open the route for richer quantitative works.

4.4 Assessment of small-heterogeneity models

The three classes of small-heterogeneity model presented in this Section have the merit to keep

the effects of time-varying precautionary savings using perturbation methods. Compared to

no-trade equilibria, the actual quantity of assets used to self-insure, i.e. the optimal quantity of

liquidity in the sense of Woodford (1990), is endogenous. In addition, this can easily be applied

to a relevant subset of households in a DSGE model.

An additional gain of these representations is that the state space is small. For an equilibrium

where agents hit the borrowing constraint after L periods of unemployment, there are only L+1

different wealth levels.

There are nevertheless two main drawbacks. First, when L grows, the state space doesn’t

converge toward a Bewley economy, because there is no heterogeneity across employed house-

holds. As a consequence, one cannot consider the full-fledged Bewley economy as the limit of

these equilibria when there are no aggregate shocks. As a further consequence, one cannot use

all the information about the cross-section of household inequality (for instance all employed

agents are similar). Hence, the models capture only a part of time-varying precautionary saving.

Admittedly, this a key part as the unemployment risk is the biggest uninsurable risk faced by

households (Carroll et al. 2003).

The second drawback is that the number of periods of consecutive unemployment before
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the credit constraint binds (denoted as L) is part of the equilibrium definition: it has to be

computed as a function of the model parameters. If aggregate shocks are small enough, this

number is not time-varying, but this has to be checked during the simulations.

New developments provide environments without these drawbacks, at the cost of a bigger

state space.

5 Truncated-history models

Le Grand and Ragot (2016b) present a general model to generate limited heterogeneity with

an arbitrarily large but finite state space and which can be made close to the Bewley model.

In this environment, the heterogeneity across agents depends only on a finite but possibly ar-

bitrarily large number, denoted N , of consecutive past realizations of the idiosyncratic risk (as

a theoretical outcome). As a consequence, the history of idiosyncratic risk is truncated after

N periods. Agents sharing the same idiosyncratic risk realizations for the previous N periods

choose the same consumption and wealth. As a consequence, instead of having a continuous

distribution of heterogeneous agents in each period, the economy is characterized by a finite

number of heterogeneous consumption and wealth levels. The model can be simulated with

DYNARE and optimal policy can be derived solving a Ramsey problem in this environment.

The presentation follows the exposition of the decentralized equilibrium of Le Grand and Ragot

(2016b)4.

5.1 Assumptions

Truncated histories. Consider the following notations. First, the program is written in

recursive forms to simplify the exposition, such that x′ is the next-period value of the variable

x. ẽ0 is the current beginnning-of-period idiosyncratic state of the agent under consideration, ẽ1

is the beginning-of-period idiosyncratic state one period ago, and ẽk is the beginning-of-period

idiosyncratic state k periods ago. As a consequence and for any N , each agent enters any period

with a N−period history ẽN ∈ EN , ẽN = {ẽN−1, ..., ẽ0}. This N−period history is a truncation

of the whole history of each agent: It is the history of the agent for the last N periods, before
4In the paper, Le Grand and Ragot show that this allocation can be represented as the allocation of a con-

strained planner. This insures existence and uniqueness for a given price dynamics.
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the agent learns its current idiosyncratic shock e ∈ E for the current period.

After the idiosyncratic shock is realized, the agent has the (N + 1)−period history denoted

eN+1 ≡ (ẽN , e). Histories without a tilda are thus histories after the idiosyncratic shock is

realized. We can also write eN+1 = (ẽN−1, e
N ) = (ẽN , e) = (ẽN−1, ẽN−2, ..., ẽ0, e). Indeed, eN+1

can be seen as the the history ẽN with the successor state e, or as the state ẽN−1 followed by

the N−period history eN .

The probability ΠêN ,eN (X) that a household with end-of-period history (i.e. after the id-

iosyncratic shock is realized) êN = (êN−1, . . . , ê0) in the current period experiences a next-period

end-of-period history eN = (eN−1, . . . , e0) is the probability to switch from state ê0 in the cur-

rent period to state e0 in the next period, provided that histories êN and eN are compatible.

More formally:

Πt,êN ,eN (X) = 1eN�êNMê0,e0 (X) , (18)

where 1eN�êN = 1 if eN is a possible continuation of history êN , and 0 otherwise.

From the expression (18) of the probability ΠêN ,eN , we can deduce the dynamics of the

number of agents having history eN in each period, denoted SeN :

S′eN =
∑

êN∈EN
SêNΠêN ,eN (X), (19)

The previous expression is the application of the law of large numbers in a continuum.

Preferences. For quantitative reasons that will appear clear below, we assume that the

utility of each agent may be affected by its idiosyncratic history. More formally, it depends

on the history of idiosyncratic risk eN , recalling that eN+1 = (ẽN−1, e
N ). As a consequence,

preference depends on the current and the last N − 1 idiosyncratic shocks. The period utility

is thus ξeNU(c, l), where ξeN > 0. The equilibrium can be derived for ξeN = 1, as in Le Grand

and Ragot (2016b). Adding the terms ξeN > 0 is a trick to make the model more quantitatively

relevant. It has the same role as the stochastic discount factor in Krusell and Smith (1998).

To simplify the algebra, it is assumed that the period utility function exhibits no wealth

effect on the labor supply (which is consistent with empirical estimates). The period utility
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function is of the Greenwood-Hercowitz-Huffman (GHH) type

U(c, l) = u

c− l
1+ 1

ϕ

1 + 1
ϕ


State vector. Denote X the state vector in each period, which is necessary to form rational

expectations. This state vector will be specified below. For now it is sufficient to assume that

it is finite dimensional.

Transfer. The trick to reduce heterogeneity is to assume that each agent receives a

lump-sum transfer, which depends on her N + 1−history. This lump-sum transfer is denoted

ΓN+1(eN+1, X) and it will be balanced in each period.

Program of the agents. The agent maximizes her inter-temporal welfare by choosing the

current consumption c, labor effort l and asset holding a′. She will have to pay an after-tax

interest rate and wage rate denoted as r and w, as before. The value function can be written as

V (a, eN+1, X) = max
a′,c,l

ξeNu

c− l
1+ 1

ϕ

1 + 1
ϕ

+ βE

∑
e′∈E

Me,e′(X)V (a′, (eN , e′), X ′)

 (20)

a′ + c = w(X)nel + δ1e=0 + (1 + r(X))a+ ΓN+1(eN+1, X) (21)

c, l ≥ 0,a′ ≥ −ā (22)

Denote η̃(a, eN+1, X) the Lagrange multiplier of the credit constraint a′ ≥ −ā. The so-

lution to the maximization program (20)–(22) is the policy rules denoted c = gc(a, eN+1, X),

a′ = ga′(a, eN+1, X), l = gl(a, eN+1, X) and the multiplier η̃ satisfying the following first-order

conditions, written in a compact form (I omit the dependence in X to lighten notations):

ξeNu
′

c− l
1+ 1

ϕ

1 + 1
ϕ

+ η̃ = βE

∑
e′∈E

Me,e′ξe′Nu
′

c′ − l
′1+ 1

ϕ

1 + 1
ϕ

 (1 + r′)

 , (23)

l = (wne)ϕ, if e > 0, (24)

l = δ if e = 0, (25)

η̃(a′ + ā) = 0 and η̃ ≥ 0. (26)
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5.2 Equilibrium structure

We can show that all agents with the same current history eN have the same consumption, saving

and labor choices. To do so, we follow a guess-and-verify strategy. Assume that agents entering

the period with a beginning-of-period history ẽN have the same beginning-of-period saving aẽN .

These agents have a current productivity shock e, and have thus a history eN+1 = (ẽN , e). There

are SẽN ,−1 agents with a beginning-of-period history ẽN and SeN agents with a current (i.e. after

the current shock) history eN .

Under the assumption that for any ẽN ∈ EN , agents having the history ẽN have the same

beginning-of-period wealth aẽN , the average welfare (before transfer) of agents having a current

N -period history is

ãeN =
∑

ẽN ∈ EN

SẽN

S′
eN

ΠẽN ,eNaẽN , for all eN . (27)

The term
∑

ẽN ∈ EN
SẽNΠẽN ,eNaẽN is the total wealth of agents having current history eN .

Dividing by the number of those agents, we find the per capita value ãeN . The transfer is now

easy to define:

ΓN+1(eN+1, X) ≡ (1 + r) (ãeN − aẽN ) . (28)

The transfer ΓN+1 swaps the remuneration of the beginning-of-period wealth aẽN of agents

having history ẽN by the remuneration of the average wealth ãeN of agents having the current

N−period history eN = (ẽN−2, . . . , ẽ0, e). It is easy to see that this transfer is balanced, as it

only reshuffles wealth across a sub-group of agents.

The impact of the transfer on agents’ wealth. It is easy to see that all agents consider

the lump-sum transfer ΓN+1 as given and thus do not internalize the effect of their choice on

this transfer (because there is a continuum of agents for any truncated history). We consider

the impact of transfer ΓN+1(eN+1, X) for an agent with history eN+1 = (ẽN , e) ∈ EN+1 and

beginning-of-period wealth aẽN . Her budget constraint (21) can be expressed using transfer

expression (28) as follows:

a′ + c = wnel + δ1e=0 + (1 + r)ãeN . (29)
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The beginning-of-period and after-transfer wealth of agents with a beginning-of-period history

eN+1 depends only on the current N−period history eN . Moreover, as can be seen from (20),

agents with the same N−period history eN are endowed with the same expected continuation

utility as long as they save the same amount a′. Therefore, agents with the same current

N−period history eN behave similarly: they consume the same level, they supply the same

labor quantity, and they hold the same wealth.

State vector. The aggregate state of the economy X is the collection of: (i) the beginning-

of-period wealth distribution depending on the N−period history (SeN , aeN )eN∈EN (i.e., the size

of the agent population with history eN , together with their respective wealth), and (ii) the

aggregate state h, which affects transition probabilities.

5.3 Equations of the model

We can now write the equations of the models with a truncation for N periods of idiosyncratic

histories. We introduce the time subscript to simplify the reading and the numerical imple-

mentation. Define as Ct the set of N−period idiosyncratic histories for which agents face credit

constraints (We show how to find Ct below). The histories EN−Ct are thus not credit-constrained.
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at,eN + ct,eN = wtlt,eN + δ1eNt =0 + (1 + rt)ãt,eN , for all eN , (30)

ξeNu
′

ct,eN − l
1+ 1

ϕ

t,eN

1 + 1
ϕ

 = βEt

 ∑
êN∈EN

Πt,eN ,êN ξêNu
′

ct+1,êN −
l
1+ 1

ϕ

t+1,êN

1 + 1
ϕ

 (1 + rt+1)

 , for eN ∈ EN − Ct
(31)

lt,eN = wϕt 1et>0 + δ1et=0, for all eN , (32)

at,eN = −a, for eN ∈ Ct (33)

ãt,eN =
∑

ẽN∈EN

St−1,ẽN

St,eN
Πt−1,ẽN ,eNat−1,ẽN , for all eN , (34)

St,eN =
∑

ẽN∈EN
St−1,ẽNΠt−1,ẽN ,eN , for all eN , (35)

Kt+1 =
∑
e∈EN

St,eNat,eN , (36)

Lt =
∑
e∈EN

St,eN lt,eN , (37)

rt = λAtK
λ−1
t L1−λ

t − µ (38)

wt = (1− λ)AtKλ
t L
−λ
t (39)

For a given technology process At, this system has 5×EN +4 equations for 5×EN +4 variables

((at,eN , ct,eN , lt,eN , ãt,eN , St,eN )eN∈EN ,Kt+1, rt+1, wt, Lt)t=0...∞. Before simulating the model, one

has to find the set of histories facing credit constraint Ct. To so so, we first solve the model

under steady state to find C, and then we assume that shocks are small enough to check that

credit constraints are indeed binding.

5.4 Algorithm for the Steady state

For a given N , rank first the agents according to their idiosyncratic history. For instance, for the

history eN,t = {eN−1, ..., e0} ∈ EN , one can consider k = 1+
∑N−1
i=0 eiE

N−1−i. With this ordering,

k = 1 for the agents who are unemployed for N periods et = {0, ..., 0} and k = EN = 2N for

et = {1, ..., 1}. In other words, agents with a low k have been unemployed recently for a long

period of time. All the steady-state variables will be indexed by k instead of eN . We thus look
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for ((ak, ck, lk, ãk, Sk)k=1..EN ,K, r, w, L).

The algorithm for the steady state is the following.

1. Assume that the set of histories C is credit constrained. For all k ∈ C, we have ak = −a.

(a) Consider an interest rate r such that β(1 + r) < 1. Deduce the real wage w, using

equations (38) and (39).

(b) Deduce lk using (32).

i. Assume values for the vector of consumption levels of constrained agents ck, k ∈ C.

ii. Using the Euler equations (31) and labor supply lk find the consumption levels

of unconstrained agents ck, k /∈ C.

iii. Using the budget constraints (30) of unconstrained agents C and the risk-sharing

equation (34) find the savings of unconstrained agents ak, k /∈ C.

iv. Deduce from the budget constraint of constrained agents, k ∈ Sc, the implied

consumption levels c̃k, k ∈ C.

v. Iterate over ck, k ∈ C until ck = c̃k, k ∈ C.

(c) Compute the implied interest rate r̃ using equations (36), (37) and (38).

(d) Iterate on runtil r = r̃.

2. Check that histories k ∈ C are credit-constrained and histories k /∈ C are not, iterate on C

otherwise.

5.5 Dynamics

The model can be easily simulated for small aggregate shocks at the first order, assuming that

those shocks are small enough such that the set of constrained histories remains always the same.

This can be checked during each simulation, checking that Euler equations hold with inequality

for assumed constrained households. The simple way to simulate the model is 1) to write a code

that writes the set of equations (30) - (39) as a DYNARE code, 2) specify the steady state found

in the previous Section as initial values to double-check that the steady state is correct, using

the “resid” function of DYNARE, and 3) simulate the model using the “stoch_simul” function.
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5.6 Choosing the preference shifters ξeN

The simulations of the model can be done for any ξeN . How can we choose these parameters?

What are they useful for? The simplest choice is to set ξeN = 1, eN ∈ EN . But the choice

of these ξeN can be made to improve the fit of the equilibrium distribution to a given target.

Indeed, if one has empirical average estimates of wealth levels of agents for an observed history

on the labor market eN , namely âeN for eN ∈ EN , then one can iterate over ξeN , until the

steady savings values of the model are close enough to their empirical counterpart aeN ' âeN

for eN ∈ EN . For instance, one can simulate a Bewley-Aiyagari-Hugget model to get the model-

generated averages âeN for eN ∈ EN , and then iterate over ξeN in the truncated economy for the

steady-state outcome of the truncated model to be close to the “true” values âeN for eN ∈ EN .

The general ability of the truncated model to reproduce any given wealth distribution is still an

open question.

5.7 Numerical example

As an example, one can now provide numerical simulations of the truncated model. The goal of

this simulation is not to provide a quantitatively relevant model, but to show how the truncated

economy can be simulated. First, assume that the period GHH - utility function is

U(c, l) = 1
σ − 1

c− l
1+ 1

ϕ

1 + 1
ϕ

σ−1

,

where ϕ is the inter-temporal Frisch elasticity of labor supply. The period is a year. The

discount factor is set equal to β = 0.96. The curvature of the utility function is σ = 2 . The

Frisch elasticity of the labor supply is also set to ϕ = 0.1. The quantity λ is the capital share,

which is set to 0.36, while µ is the annual depreciation rate, set to 10%. The replacement ratio

is set to δ/w = 0.3, which is in the lower range of empirical estimates. The credit constraint is

set to ā = 0. As a benchmark the model is solved with ξeN = 1, eN ∈ EN .

The autocorrelation of the technology shock ρa is 0.8, and the standard deviation σa = 0.01.

Table 1 summarizes the parameter values.

Concerning the the labor process, the following transition matrix is considered
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N β ϕ σ µ λ ρa σa ā

6 0.96 1 2 0.1 0.36 0.8 0.01 0

Table 1: Parameter Values

K L GDP Ctot r w

Mean 4.07 0.95 1.60 1.21 .0417 1.08
St. dev 0.12 0.002 0.04 0.02 .003 0.025

Table 2: First and second-order moments of key variables

M =

 0.2 0.8

0.05 0.95


When unemployed, agents have a yearly probability 0.2 to stay unemployed. This matrix

corresponds more to a European labor market than the US labor market where the persistence

of states is lower. This implies that the steady-state unemployment rate is roughly 6%.

The model is solved for N = 6. This implies that agents differ according to their idiosyncratic

histories for the last 6 periods and that there are 26 = 64 different agents in this economy. As a

software like DYNARE can handle a few thousand equations, it implies that a maximum length

of N = 12 (such that 212 = 4096) seems a number consistent with current standard computers.

In the steady state without aggregate shocks, one finds that only agents unemployed for

N = 6 periods are credit constrained. All other agents have a positive saving. The simulation

of the model with aggregate shocks take 3 seconds in DYNARE.

The next table provides first and second-order moments for this economy. The gain of

using perturbation methods and DYNARE is that the impulse response function can be easily

simulated for continuous exogenous shocks, as the state space for the aggregate variable is

continuous. As an example the following figure plots IRFs after a TFP shock (first panel) for

relevant variables. The variables are provided in percentage proportional deviation from steady

state values, except the real interest rate which is in percentage level deviation from its steady

state values.

Computing the amount of extra insurance provided by the truncation.

The structure of the truncation provides an additional transfer to any agents, summarized

by the amount ΓN+1(eN+1, X) in equation (21). This transfer can be seen as an extra-insurance

term, as it cancels the effect of past shocks to reduce heterogeneity. As the transfer is balanced,

39



Figure 1: Impulse Response Functions after a technology shock
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the average value of the transfer in any period is 0. In a full-fledge Bewley model, this transfer is

exactly 0 for all agents, and the whole history of idiosyncratic shock matters for each individual

agent. A measure of the contribution of the transfer to any agent’s income is provided by the

measure

∆eN+1 = ΓN+1(eN+1, X)
w(X)nel + δ1e=0 + (1 + r(X))a

This ratio ∆eN+1 is the relative contribution of the transfer to the income of an agent having

an history eN+1. For the case N = 6 used in the current calibration, one finds that sd(∆eN )

= 5.48%, which is a relatively small amount. Le Grand and Ragot (2016b) show that this

standard deviation tends toward 0 as N increases. As a consequence, an increase in N reduces

the amount of extra insurance provided by the truncation.

6 Optimal policies

A common outcome of the previous models is that one has a finite number of types of agents to

follow, as an equilibrium outcome. This allows deriving optimal policies using Ramsey techniques

developed in the representative agents environments (Sargent and Ljungqvist 2012 for a textbook

presentation), which is an interesting methodology to investigate the distortions generated by

market frictions. Ragot (2016) investigates optimal monetary policy in a model with capital

accumulation and flexible prices. Bilbiie and Ragot (2017) study optimal monetary policy in

a monetary model with sticky-prices. Challe (2017) analyzes optimal monetary policy in a

no-trade model with unemployment risk.

Recently, Le Grand and Ragot (2016b) developped a general technique to solve for optimal

policies in truncated economies. They study optimal fiscal policies in a model with heterogeneous

agents and aggregate shocks, with four instruments: a positive transfer, two distorting taxes on

capital and labor, and public debt. This may be a promising route, as the distortions generated

by incomplete insurance markets are hard to identify (Aiyagari (1995) and Davila, Hong, Krusell

and Rios-Rull (2012) for a contribution about the optimality of the level of the capital stock).

Nuno and Thomas (2017) solve for optimal monetary policy in a model with heterogeneous agents

in continuous time, and without aggregate shocks. (See also references in Le Grand and Ragot

(2016b) for many relevant papers deriving optimal policies with heterogeneous agents). As far as

I know, deriving optimal policies (monetary, fiscal or unemployment benefits) with incomplete
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markets and aggregate shocks is only easily done in a reduced-heterogeneity equilibrium, whereas

it is impossible at this stage in full-fledged incomplete-market models.

7 Comparison with other approach using perturbation methods

It maybe useful to compare the methods presented in this chapter with other methods using

perturbation techniques. The key similarity of methods of this chapter is indeed to use per-

turbation methods around a steady state with idiosyncratic risk but with a finite state-space

support as an equilibrium outcome. In addition, the state space for the aggregate risk has a

continuous support, as in the DSGE literature. The model can be simulated with a finite number

of equations using perturbations and software as DYNARE can be used.

Other strategies have been used to make possible the use perturbation methods5. First,

Reiter (2009) uses perturbation methods to solve for aggregate dynamics around a steady-

state equilibrium of a Bewley model, with idiosyncratic shock but no aggregate shock. These

techniques, used for instance in McKay and Reis (2016b), linearize policy rules around an

equilibrium distribution, which has an infinite support (but the aggregate state has a finite

suport).

Mertens and Judd (2012) use perturbation methods around a steady-state with neither ag-

gregate nor idiosyncratic shock. They use a penalty function to pin down steady-state portfolios

(which are not determined without risks). Other papers using perturbation method but re-

stricting exogenously the state-space are Preston and Roca (2007) and Kim, Kollmann, and

Kim (2010). For instance, one can solve the model using an exogenous finite grid for the saving

decisions.

The techniques presented in this chapter implied that the reduction in heterogeneity appears

has an equilibrium outcome. To summarize the previous remarks, the gain is threefold.

First, this allows to consider many assets. For instance, Challe, Le Grand and Ragot (2013)

price arbitrarily large number of maturities of the yield curve. Le Grand and Ragot (2016a)

price both assets and derivative assets in the same model. This last two papers consider a
5Global methods are also used to solve these models. See Algan, Allais, DenHaan, Rendahl (2014) for a survey

of methods and Krueger, Dirk Mitman, Kurt and Perri, Fabrizio (?) for a recent application to the subprime
crisis in the US. Den Haan (2014) discusses (global) solution methods for models with and without rational
expectations.
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finite state space for the aggregate risk. Considering different assets, some recent contributions

in households finance show that non-convex portfolio adjustment costs (such as fixed costs)

are necessary to rationalize households reaction to fiscal stimulus. This is the outcome of the

recent literature on wealthy hand-to-mouth agents (Kaplan, Moll and Violante (2016) and Ragot

(2014)). The ability of reduced heterogeneity models to reproduce the data with such costs is

an open question. Indeed, participation decision would depends on idiosyncratic histories, but

they would have not to change with aggregate shocks.

Second, having a finite number of equations (in a possibly large model) allows using econo-

metric techniques, such as Bayesian estimation, which are then relatively easy to implement.

This is done in Challe, Matheron, Ragot and Rubio-Ramirez (2016) to quantify the contribution

of precautionary saving to the business cycle in the US.

Third, the finite number of equations permits the derivation of optimal policies in these

environments. This last properties allow considering rich and relevant tradeoffs for both fiscal

and monetary policies, about redistribution, insurance and incentives.

The cost of using the models presented in this Chapter is that the representation of inequality

is simplified in all cases compared to full-fledged Bewley models. As a consequence, these models

are less useful when one wants to describe in details inequalities generated by self-insurance for

uninsurable risks. Nevertheless, models with truncation in the space of idiosyncratic histories

can generate an arbitrarily high number of agents to match any targeted wealth distribution. As

a consequence, this type of model is more suited for quantitative work focusing cross-sectional

heterogeneity.

8 Heterogeneous expectations

The previous models have been presented under the assumption that agents share the same

information set and form rational expectations. The gain of this assumption is that expectations

are consistent with the model, what is an appealing property, and that they are the same for all

agents. This last outcome is not totally consistent with data surveys, which shows heterogeneity

in expectation about aggregate variables (see Carroll (2003), Branch (2004), and Massaro (2013))

and heterogeneity in expectation formation for the same information set (See Hommes (2011) and

Coibion and Gorodnichenko (2015)). A second line of research, called Agent-Based Modeling
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(ABM) departs from rational expectations in assuming that agents follow simple rules, and

change rules according to interactions, or that they use expectations formation rules that differ

from rational expectations. Hommes (2006) and LeBaron (2006) provide early surveys of this

literature; Branch and McGough (2018) and Dieci and He (2018) give up to date state of the

art surveys of heterogeneous expectations models in macroeconomics and finance respectively.

The frontier between these two lines of research (rational and non-rational expectations) is still

visible in the reference lists of various papers, but it can be expected to disappear progressively,

as a growing literature investigates relevant models of expectation formation.

The tools developed in this chapter could be useful to model heterogeneous expectations in

a tractable way, and thus contribute to close the gap between these two literatures. First, in

some models agents choose in each periods the rules to form expectations (Branch and McGough

(2009) and Massaro (2013) or how much effort to invest to form expectation, as in the rational

inattention literature (see Andrade and Le Bihan (2013), or Vellekoop and Wiederholt (2017)

and the references in this last paper). As the various equilibrium structures presented in the

previous Sections don’t depend on rational expectations to reduce heterogeneity, they could

be useful to construct models with a finite number of different expectations. Models where

expectations are a state variable, as in learning models, may also be consistent with previous

models. For instance, if agents experiencing the same history of shocks for a long period of time

converge to the same expectations, then a truncation in histories of idiosyncratic shocks could

also be a satisfactory assumption. Finally, as noted by Den Haan (2014) the case where some

agents form rational expectations whereas others are boundedly rational are difficult to solve.

The models presented here could allow to reduce heterogeneity among rational agents and could

help to solve some of those models.

9 Concluding remarks

This chapter surveys a class of heterogeneous-agent models, where heterogeneity is finite as

an equilibrium outcome. Agents differ according to “shocks” defined in a broad sense that

occur in their life. We focused more precisely on representations of reduced heterogeneity with

rational expectations which can be solved with perturbation methods for the aggregate shocks.

This allows introducing many other “frictions” studied in the literature, such as search-and-
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matching in the labor market, sticky prices, heterogeneity in skills, habit formation and son

on. These models can be estimated, using a vast information set, including times-series and

cross-sectional information. Integrated models with both uninsurable shocks, a role for forward-

looking behavior together with relevant heterogenous expectations would be a good laboratory

to quantify the relative importance of these various ingredients.

Finally, the models of this chapter has focused on households heterogeneity, leaving aside

other forms of heterogeneity among firms or financial intermediaries. This opens a deeper

question about the relevant level of aggregation to think about heterogeneity, and which type of

heterogeneity matters for economic analysis. If a recent consensus seems to emerge about the

importance of households heterogeneity, the interactions of various types of heterogeneity seem

an interesting line of research.
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