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Abstract

We analyze the term structure of real interest rates in a general equilibrium model with

incomplete markets and borrowing constraints. Agents are subject to both aggregate and id-

iosyncratic income shocks, which latter may force them into early portfolio liquidation in a bad

aggregate state. We derive a closed-form equilibrium with limited agent heterogeneity (despite

market incompleteness), which allows us to produce analytical expressions for bond prices and

returns at any maturity. The attractiveness of bonds as liquidity makes aggregate bond demand

downward-sloping, so that greater bond supply raises both the level and the slope of the yield

curve. Moreover, time-variations in liquidation risk are shown to help explain the rejection of

the Expectations Hypothesis.

Keywords: incomplete markets; yield curve; borrowing constraints.

JEL codes: E21; E43; G12.

Résumé

Nous analysons la structure par terme des taux d’intérêt dans un modèle d’équilibre général

dans lequel les marchés financiers sont incomplets et où les agents font face à des contraintes de

crédit. Les agents font face à la fois à des risques agrégés et à des risques idiosyncratiques non

assurables. Nous dérivons une solution en forme fermée, dans un équilibre avec hétérogénéité

limitée, malgré l’incomplétude des marchés. Ceci nous permet de dériver des solutions analy-

tiques pour les prix et les rendements des obligations de différentes maturités. Nous trouvons

que la demande d’obligation décroit avec le prix de celles-ci, de sorte qu’un accroissement du

volume de dette publique augmente à la fois le niveau et la pente de la courbe des taux. On

montre par ailleurs, que l’incomplétude des marchés contribue au rejet d’une prime de terme

constante pour chaque maturité.

Mots-clés : Marchés incomplets, courbe des taux, contrainte de crédit

Codes JEL : E21; E43; G12.
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This paper proposes a tractable general equilibrium model of the (real) term structure in which

financial markets are incomplete and where government bonds are held as a buffer stock against

uninsurable labor income shocks. In contrast with the complete-market framework, in which Ri-

cardian equivalence holds and hence non-distortionary changes in the public debt leave the yield

curve unchanged, we find that the supply of bonds, the pervasiveness of individual income risk,

and the way in which this latter interacts with the business cycle all affect the shape of the yield

curve. Our basic assumption, which we share with much of the incomplete-market literature, is that

agents cannot issue state-contingent securities or debt instruments and thus have a specific “pre-

cautionary” motive for holding assets (See Bewley (1983), Scheinkman and Weiss (1986), Huggett

(1993) and Aiyagari (1994), among others). The key novelty of our approach is the construction

of an equilibrium that allows for an analytical characterization of bond prices at all maturities

when idiosyncratic and aggregate labor income risks interact and where active asset trading takes

place in equilibrium. Since our primary interest is in the way these sources of risk jointly affect

the demands for specific maturities, our analysis focuses on the simple class of zero-coupon real

bonds, but other assets involving additional sources of risk (e.g., asset income risk, inflation risk,

etc.) could also be studied within this framework.

Our analysis yields four sets of results. We first study the effect on the yield curve of a change

in the net supply of government bonds, financed by non-distortionary taxes. This change can be

regarded as an exogenous variation in the amount of“aggregate liquidity”, defined as the quantity of

assets available to self-insure against idiosyncratic income shocks (see below for further discussion of

the liquidity concept used here). While this change would not alter the yield curve under complete

markets, aggregate bond demand is downward-sloping in our model: increasing the supply of bonds

of any maturity lowers the price of all bonds, i.e., it raises the entire yield curve. This is easily

understood from the liquidity role played by government bonds in our economy. In the presence

of both idiosyncratic income risk and trade restrictions (i.e., debt limits), high-income agents hold

bonds of any maturity for precautionary purposes. In this context, more liquidity reduces the

attractiveness of bonds and their equilibrium price. Since bonds of various maturities are imperfect

substitutes for each other, raising the supply of one particular type of bond will lower the price of

all bonds.

Our second result is that a larger bond supply steepens the yield curve by affecting relative

prices, i.e., the risk premia associated with bonds of different maturities. In our model, risk premia
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differ across bonds because agents may be forced to liquidate assets before maturity, when their

selling price is low (due to a bad realization of aggregate uncertainty). Since the risk of early

liquidation increases with the maturity of the bond, long bonds command a greater premium than

comparatively shorter bonds. Following an increase in the supply of bonds, the desirability of

additional liquidity instruments decreases and the premium required to hold long, risky bonds rises

more than that on short bonds. Hence both the level and the slope of the yield curve increase with

the supply of bonds.

Both results are consistent with a number of recent empirical findings that are at odds with the

Ricardian equivalence property implied by the frictionless, complete-markets framework. While

early empirical work (such as summarized by Elmendorf and Mankiw (1999)) failed to reach a

consensus about the relationship between interest rates and the supply of government bonds, recent

studies have been more conclusive. For example, Laubach (2009) reports that an increase in both

public debt and fiscal deficits significantly raises interest rates on government bonds. Similarly,

Krishnamurthy and Vissing-Jorgensen (2008) find that the size of public debt negatively affects

the spread between corporate and Treasury bond yields, and explain this effect by a liquidity-

based demand for government bonds. In a related contribution, Longstaff (2004) measures the

liquidity premium on U.S. Treasury bonds prices and finds the supply of such bonds to be the most

significant source of variation in the liquidity premium. While less work has specifically addressed

the relationship between the quantity of government bonds and the slope of the yield curve, findings

there are consistent with the basic predictions of our model. For example, Reinhart and Sack (2000)

find that (projected) government surpluses are significantly negatively correlated with the slope of

the yield curve in OECD countries. Similarly, Dai and Philippon (2006) show that an increase in

the government deficit-to-GDP ratio raises long yields more than short ones.

Our third result pertains to the identification of the channels through which market incomplete-

ness contributes to the rejection of the Expectation Hypothesis. More specifically, we show that

time-variations in idiosyncratic risk generate or amplify time-variations in term premia, one of the

most basic regularities in the empirical term-structure literature (e.g., Campbell and Shiller (1991),

Donaldson, Johnsen, and Mehra (1990)).

Last, we derive some of the welfare implications of our liquidity-constrained model. We first

show that increasing the quantity of government bonds raises welfare (both ex post and ex ante) only

if agents are sufficiently patient; if they are not, the aggregate welfare gains associated with higher
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liquidity may be offset by the (potentially large) fall in utility that some agents suffer from higher

taxes. Second, while more generous unemployment insurance always increases ex ante welfare, an

increase in social contributions incurred by currently employed agents may lower their utility if they

are not sufficiently patient to value the future utility gains from the associated insurance scheme.

As far as we are aware, our framework is the first “liquidity-based” general equilibrium asset

pricing model in which the entire yield curve, including bonds of arbitrarily long maturities, can

be priced. One potential explanation for the lack of such a framework is the inherent complexity of

infinite-horizon, incomplete markets models with a large number of assets. On the one hand, market

incompleteness implies that agents’ wealth and optimal decisions depend on the whole history of

idiosyncratic shocks that each agent has faced, so that infinitely many agent types asymptotically

co-exist in the economy; this usually precludes the derivation of analytical expressions and general

conclusions regarding asset prices. On the other hand, computational methods, when applied to

economies hit by aggregate shocks, can only handle a small number of assets, typically one or two

(e.g., Den Haan (1996), Heaton and Lucas (1996), Krusell and Smith (1997), Heathcote (2005)).

Our framework allows us to get around this issue by endogenously generating finite-dimensional

cross-sectional distributions of wealth states and agent types. The central simplifying feature of our

analysis is that we focus on equilibria with “full asset liquidation”, i.e., where agents immediately

face a binding borrowing constraint when their current income falls. Consequently, at this corner

solution agents endogenously choose to liquidate their bond portfolio and thus no longer affect asset

prices. Note that while we focus on the yield curve implications of this framework here, our hope

is that it is flexible enough to be applicable to a much broader range of issues pertaining to general

equilibrium-based asset pricing and, more generally, to the macroeconomics of heterogeneous agents.

After a brief discussion of the literature, we introduce our framework in Section 2. Section 3

describes the full asset liquidation equilibrium, and establishes the associated existence conditions.

Section 4 studies the impact of changes in bond supplies on the level and the slope of the yield

curve. Section 5 analyzes the effects of time-variations in idiosyncratic risk for the shape of the

yield curve and the cyclicality of bond premia. The welfare properties of the model are then derived

in Section 6, while Section 7 concludes.
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1 Related literature

The notion of “liquidity” is not devoid of ambiguity, so it is important to differentiate clearly the

definition used here from other common uses in the asset-pricing literature. In our model, liquidity

is made up of all assets that allow agents to transfer wealth across time to meet future and uninsur-

able spending needs (earlier models making use of this liquidity concept include Woodford (1990),

Holmström and Tirole (1998) and (2001), Kehoe and Levine (2001), and Fahri and Tirole (2008)).

By construction, in frictionless markets the demand for store of values by agents with transitorily

high incomes is adequately met by the supply of “inside liquidity” (i.e., private debt) issued by

agents with transitorily low incomes. In markets with frictions, however, private asset issuances

are restricted and “outside liquidity” (here government bonds) partly substitutes for the missing

financial instruments; then, the supply of aggregate liquidity typically constrains competitive al-

locations and has first-order implications for the desirability and price of liquidity instruments.

This approach thus differs from recent work that refers to liquidity as the ease with which agents

may trade assets in decentralized markets (e.g. Duffie, Garleanu, and Pedersen (2005), Lagos and

Rocheteau (2007) and (2009), Vayanos and Weil (2008)). It also differs from that in work which

identifies “illiquidity” with limited asset-market participation arising from margin constraints (as in

Brunnermeier and Pedersen (2009), and Chowdhry and Nanda (1998)) or entry costs (e.g., Pagano

(1989)).

The idea that markets incompleteness can help explain asset-pricing puzzles was first explored

in finite horizon economies. Following the lead of Mankiw (1986) and Weil (1992), who focused

on stock returns, Heaton and Lucas (1992), and more recently Holmström and Tirole (2001), have

used three-period models to analyze the effects of interactions between idiosyncratic and aggregate

risks on the yield curve. These models provide important insights into these interactions but leave

open the question of how they affect the yield curve over a long horizon.

There is a key class of infinite-horizon, incomplete-markets models where analytical expressions

for the price of long assets can be obtained: those where the no-trade equilibrium prevails. Such is

the case in Constantinides and Duffie’s (1996) model of the equity premium. A more recent contri-

bution is Krussel, Mukoyama, and Smith (2008), who study asset prices in the autarkic equilibrium

of a liquidity-constrained economy. In their model agents value assets (including bonds of different

maturities) for their ability to transfer wealth across periods and smooth out idiosyncratic income

shocks, but do not trade in equilibrium. In contrast, since our focus in on how the quantity of
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liquidity available in the market allows this intertemporal smoothing to take place, and thereby

affects the desirability of bonds, our results require active trading of positive net bond supplies by

agents following idiosyncratic income shocks.

In order to organize, and put structure on, their empirical findings summarized above, Kr-

ishnamurthy and Vissing-Jorgensen (2008) develop a theoretical model of liquidity demand that

generates a downward-sloping demand for government bonds, as in our model. The central dif-

ference between the two approaches is that their aggregate demand for liquidity is based on the

assumption that government bonds directly enters agents’ utility, while our model seeks to provide

micro-foundations to the liquidity motive for holding bonds based on financial frictions.

Because of their intrinsically non-Ricardian nature, overlapping generations (OLG) models are

natural competitors to the asset-pricing framework with infinitely-lived agents that we develop

below. For example, OLG models usually have the property that increasing the stock of government

bonds can raise the equilibrium interest rate when agents are constrained by the supply of stores of

value in the economy (Barro (1974)). However, in our model the risk premia on various maturities

are related to the risk of having to liquidate assets (following an unfavorable idiosyncratic income

shock) precisely when the economy is in recession (when the aggregate shock is also unfavorable).

Aside from the fact that their time scale is ill-suited to the study of business cycle phenomena,

basic OLG models with two-period life-spans cannot generate such premia because liquidation

occurs with certainty in later-life (and hence there is no liquidation risk). On the other hand,

while multi-period OLG models have realistic time scales and can in principle allow for random

liquidation before death, they typically cannot be solved in closed form and thus the number of

assets under scrutiny must remain small (e.g., Storesletten, Telmer, and Yaron (2007), Gomes and

Michaelides (2008)).

Finally, a popular approach in interest rate modeling is to assume the absence of arbitrage and

directly consider an exogenous pricing kernel to price bonds of various maturities (see Dai and

Singleton (2006), for an overview). Some recent papers following this partial equilibrium tradition

introduce macroeconomic factors as determinants of the pricing kernel (see Ang and Piazzesi (2003),

on monetary policy, and Dai and Philippon (2006), on fiscal policy). Other papers assume an ad

hoc demand for each maturity, the so-called “clientele effect” (e.g., Vayanos and Vila (2007)). In

contrast, our approach here is to derive the demand for, and equilibrium price of, bonds from utility

maximization.
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2 The economy

We consider a discrete-time economy populated by infinitely-lived households who face two sources

of risk: an aggregate technology shock that affects the productivity of employed households (Section

2.1); and an uninsurable individual shock that causes households to switch idiosyncratically between

employment and unemployment (Section 2.2). Agents may trade real riskless bonds of different

maturities (Section 2.3) and use them to self-insure against the income variability induced by

changes in employment status (Section 2.4). In equilibrium, the total supply of bonds equals the

economywide demand by heterogenous households (Section 2.5).

2.1 Aggregate states

The economy is characterized at every date t = 0, 1, . . . by an aggregate state ht, where ht = h if

this state is “high” and ht = l if it is “low”. Let ht = {h0, . . . , ht} denote the history of aggregate

states from date 0 to date t and Ht the set of all possible histories. The aggregate state evolves

according to a first-order Markov chain with the following transition matrix:

T =

 πh 1− πh

1− πl πl

 .
We denote by ηh ≡

(
1− πl

)
/
(
2− πl − πh

)
and ηl ≡ 1− ηh the unconditional fractions of time

spent in state h and l, respectively. We also make the following assumption:

Assumption A πh + πl > 1.

Assumption A requires that aggregate states are sufficiently persistent; while not necessary for

the derivation of most of our results, it allows us to avoid discussing uninteresting cases arising

from rapidly alternating states.1

The invariant distribution associated with the transition matrix T is denoted Φ = [Φl Φh], and

we assume that the probability distribution across both aggregate states at date 0 is Φ. We denote

by νt the probability measure over histories up to date t, consistent with the transition matrix T

and the initial distribution Φ: νt : Ht → [0, 1], t = 0, 1, . . ..
1Estimated Markov switching models are consistent this assumption. For example, Hamilton ((1994), chap 22)

finds πh + πl = 1.65 at a quarterly frequency for the US economy.
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2.2 Individual states

The economy is populated by a continuum I = [0, 1] of agents, with mass 1. In every period, each

agent can be in either of two states, “employed” or“unemployed”. Let eit denote the status of agent i

at date t, where eit = 1 if the agent is employed and eit = 0 if the agent is unemployed. Each agent’s

employment status evolves independently according to a first-order Markov chain with transition

matrix:

Π =

 α 1− α

1− ρ ρ

 , (α, ρ) ∈ (0, 1)2 ,

where α ≡ Pr(eit+1 = 1
∣∣ eit = 1) and ρ ≡ Pr(eit+1 = 0

∣∣ eit = 0). Note that our baseline specification

for Π implies that changes in individual status are not affected by the aggregate state ht. We

explicitly introduce such a dependence in Section 5, with the natural motivation that business

cycle shocks may affect probabilities to transit into and out of unemployment.

The initial probability distribution is represented by a row vector ω0 = [ ωe0 ωu0 ], i.e. ωe0

(respectively ωu0 ) is the probability at date 0 that agent i is employed (unemployed). Given this

simple Markovian structure, the probability distribution at date t, which is ω0 Πt, converges for

t→∞ to the invariant distribution ω = [ωe ωu], where ωu ≡ (1− α) / (2− ρ− α) is the asymptotic

unemployment rate and ωe ≡ 1−ωu is the employment rate. To simplify the exposition, we assume

that the unemployment rate equals its asymptotic level from date 0 on, i.e., ω0 = ω.

The history of individual shocks up to date t is denoted by ei,t, where ei,t = {ei0, . . . , eit} ∈

{0, 1}t = Et. Et is the set of all possible individual histories up to date t, and µit : Et → [0, 1], t =

0, 1, . . . denotes the probability measure of individual histories, consistent with the transition matrix

Π and the initial probability distribution ω. For example, µit
(
ei,t
)

is the probability that agent i

experiences the history ei,t at date t.

The individual and aggregate states affect the economy as follows. Employed agents freely

choose their labor supply and produce zt = zl or zt = zh units of goods per unit of labor in states

l and h, respectively, with zh ≥ 1 ≥ zl > 0. Unemployed agents get a fixed quantity of “home

production” of δ > 0. The following assumption ensures that along our equilibrium the unemployed

consume less (and thus enjoy higher marginal utility) than the employed in both aggregate states.

Assumption B 1/zl < u′ (δ).
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2.3 Assets and market structure

The only assets that agents may trade are riskless, zero-coupon government bonds that pay off one

good unit at maturity. Bond maturities vary from 1 to n ≥ 1, where n may be arbitrarily large. A

bond of maturity k > 1 at date t becomes a bond of maturity k − 1 at date t + 1, and eventually

yields 1 at date t+ k. The price of this bond at date t is pt,k(ht), and we define the price of a bond

of maturity 0 by its payoff, i.e., pt,0(ht) = 1.

Our assumption that government bonds are the only tradable assets has three significant impli-

cations. First, there is no asset providing a payoff contingent on agents’ idiosyncratic employment

status; unemployment risk is thus entirely uninsurable. Second, agents are prevented from issuing

securities in both aggregate states, so the quantity of available securities does not depend on the

aggregate state. Third, there is no security offering a payoff contingent on the aggregate state.2

There is no public consumption, so government expenditures exactly equal payoffs owed to

holders of bonds reaching maturity. At a given date t, the n bonds issued at t − 1, t − 2,. . . ,

t − n with respective maturities 1, 2,. . . , n mature. Bond payoffs are financed by both new bond

issuances and taxes. At each date t, a quantity At,k of bonds paying 1 at date t+k is issued at price

pt,k(ht). The government levies a lump sum tax τt
(
ht
)

on all agents.3 Since there is a continuum

of agents of mass 1, the government budget constraint is:

n∑
k=1

pt,k
(
ht
)
At,k + τt

(
ht
)

=
n∑
k=1

At−k,k. (1)

The aggregate supply of securities of a given maturity is composed of newly-issued bonds of

that maturity plus longer bonds issued earlier and coming closer to maturity. At date t, a total

quantity Bt,k of bonds reaching maturity at date t+ k is available in the market, where

Bt,k ≡
n−k∑
j=0

At−j,k+j . (2)

For simplicity we assume that the quantity of bonds of a given maturity is constant (i.e. Bt,k =

Bk, ∀t ≥ 0), which is equivalent to constant issuances (i.e. At,k = Ak, ∀t ≥ 0). It implies that the

2These properties are central in the literature on liquidity-constrained economies since the seminal work of Bewley
(1980). See also Kehoe and Levine (2001), and the references therein.

3We are thus assuming that unemployed agents also pay taxes. This ensures that the government does not provide
income insurance via the tax system (i.e., by limiting the consumption fall suffered by agents hit by a bad idiosyncratic
shock), but only via its control of the stock of outside liquidity. Assuming that these agents do not pay taxes does
not affect our results.
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lump sum tax satisfying (1) is:

τt(ht) =
n∑
k=1

(
pt,k−1(ht)− pt,k (ht)

)
Bk. (3)

2.4 Agents’ behavior

Each agent i ∈ I has preferences over consumption and labor that are described by the subjective

discount factor β ∈ (0, 1) and the instant utility function u (c) − l, where l is labor supply and u

is a C2 function satisfying u′ (.) > 0, and u′′ (.) < 0 (this follows Scheinkman and Weiss (1986)).

We denote the quantity of k-period bonds held by agent i at the end of period t by bit,k, and the

corresponding bond holdings at the beginning of period 0 by bi−1,k (specific assumptions about initial

bond holdings will be made in Section 3.3). Agent i’s problem consists in choosing the sequences of

consumption, cit
(
ht, ei,t

)
, labor supply lit

(
ht, ei,t

)
, and bond holdings

(
bit,k
(
ht, ei,t

))
1≤k≤n

, defined

over Ht × Et, so as to solve:

max
∞∑
t=0

βt
∑
ht∈Ht

νt
(
ht
) ∑
ei,t∈Et

µit
(
ei,t
) (
u
(
cit
(
ht, ei,t

))
− lit

(
ht, ei,t

))
, (4)

s.t. cit
(
ht, ei,t

)
+ τt(ht) +

n∑
k=1

pt,k
(
ht
)
bit,k
(
ht, ei,t

)
=

n∑
k=1

pt,k−1

(
ht
)
bit−1,k

(
ht−1, ei,t−1

)
+ eitztl

i
t

(
ht, ei,t

)
+
(
1− eit

)
δ, (5)

bit,k
(
ht, ei,t

)
≥ 0, for k = 1, . . . , n, (6)

cit
(
ht, ei,t

)
, lit

(
ht, ei,t

)
≥ 0, (7)

lim
t→∞

βtu′
(
ct
(
ht, ei,t

))
bit,k
(
ht, ei,t

)
= 0, for k = 1, . . . , n. (8)

Equation (5) is agent i’s budget constraint at date t: total income is made up of the sale

value of the bond portfolio as well as labor income if eit = 1 and home production if eit = 0; this

income is used to pay taxes and purchase consumption goods and bonds of various maturities.

Inequality (6) reflects the fact that agents cannot issue securities. Finally, conditions (7) and (8)

are the non-negativity and transversality conditions, which are always satisfied in the equilibrium

we consider.

Let ϕit,k be the Lagrange multipliers associated with the borrowing constraints (6), which are

positive functions defined over Ht × Et. From the Lagrangian function, the first-order conditions
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of this problem are:

 u′
(
cit
(
ht, ei,t

))
= 1/zt if eit = 1,

lit
(
ht, ei,t

)
= 0 if eit = 0,

(9)

u′
(
cit
(
ht, ei,t

))
pt,k

(
ht
)

= βEt
[
u′
(
cit+1

(
ht+1, ei,t

))
pt+1,k−1

(
ht+1

)]
+ ϕit,k

(
ht, ei,t

)
. (10)

Equation (9) describes the agent’s optimal labor supply: when the agent is employed (eit = 1),

the marginal utility of consumption is equal to the marginal disutility of labor over the marginal

product of labor, while labor supply is zero when the agent is unemployed (eit = 0). The Euler

equation (10) sets the marginal cost of acquiring one unit of bonds of each maturity today equal to

the marginal gain associated with its payoff tomorrow (here the Et[·] operator denotes expectations

over both aggregate and idiosyncratic states, conditional on the information available at date t,

i.e., ht and ei,t). When the shadow cost of the borrowing constraint is positive, meaning that the

constraint is binding (ϕit,k
(
ht, ei,t

)
> 0), the agent i would increase his expected utility and to issue

k-period bonds (but is prevented from doing so, by assumption).

2.5 Market clearing and equilibrium definition

We denote by Λt : (R+)n×E → [0, 1] the probability measure describing the distribution of agents

across individual wealth and productivity in period t. For example, Λt (b1, . . . , bn, 1) denotes the

measure of agents who are employed (eit = 1) and hold the portfolio b1, . . . , bn This measure depends

on the history of shocks and the initial distribution of agents, denoted Λ0. The market-clearing

condition sets the aggregate demand for bonds equal to the exogenous supply of bonds for all

maturities, i.e.,

∫
(b1,...,bk,...,bn,e)∈(R+)n×E

bk dΛt (b1, . . . , bk, . . . , bn, e) = Bk, ∀k = 1, . . . , n. (11)

By Walras Law, the good market clears when all bond markets clear. We are now in a position

to define the equilibrium in our economy.

Definition 1 For an initial distribution of bond holdings and employment status Λ0, an equi-

librium consists of individual choices {cit
(
ht, ei,t

)
,
(
bik,t
(
ht, ei,t

))
k=1,...,n

, lit
(
ht, ei,t

)
}t=0,...,∞ and

prices {(pt,k)k=1,...,n}t=0,...,∞ such that:
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1. Given prices, individual choices solve the agents’ problem (i.e., equations (4)-(8) hold);

2. Λt evolves consistently with individual policy rules and transition matrices for individual and

aggregate states;

3. All bond markets clear at all dates (i.e., equation (11) holds).

3 Equilibrium with full asset liquidation

One implication of our particular market structure is that government bonds serve as a buffer

allowing agents to partially offset the lack of full credit and insurance markets. Many models of

this class imply smooth portfolio-rebalancing in equilibrium: high-income agents gradually build up

their asset wealth, while low-income agents gradually decumulate assets (e.g. Scheinkman and Weiss

(1986), or Aiyagari (1994)). Since we focus on the implications of liquidation risk for bond pricing,

we construct our equilibrium in such a way that agents liquidate assets when a bad idiosyncratic

income shock hits (i.e. bit,k
(
ht, ei,t

)
= 0 for k = 1, . . . , n if eit = 0). All unemployed agents therefore

face a binding borrowing constraint (i.e., their fall in labor income is not entirely offset by the

liquidation value of the portfolio), while only employed agents participate in bond markets and

thus affect bond prices. This focus on an equilibrium with full liquidation drastically reduces the

number of agent types in the economy, thereby allowing us to study bond pricing analytically for

an arbitrarily large number of maturities.

Our equilibrium is obtained by construction: we first conjecture, and then derive, a sufficient

condition for the existence of an equilibrium along which employed agents are never borrowing-

constrained (i.e. they are willing to end the period with positive asset holdings), while unemployed

agents always are (i.e. they would like to borrow, rather than save). This joint conjecture can

formally be written as, for all k = 1, . . . , n:

eit = 1⇒ ϕit,k
(
ht, ei,t

)
= 0 and eit = 0⇒ ϕit,k

(
ht, ei,t

)
> 0. (12)

From now on, we simplify notation by omitting the references to aggregate and individual

histories when no ambiguity arises from doing so.
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3.1 Consumption levels and the pricing kernel

We first consider the consumption of an unemployed agent in period t. If the agent was employed

in the previous period, then from the budget constraint (5) and conjecture (12) the agent earns δ

as well as the liquidation value of his portfolio. Since the agent is borrowing-constrained, he will

consume his entire income net of taxes, i.e.,

cit =
n∑
k=1

pt,k−1 b
i
t−1,k + δ − τt (> 0) . (13)

Currently unemployed agents who were already unemployed in the previous period will already

have liquidated their assets. Their consumption, which is identical for all such agents and denoted

cuut , is simply:

cuut = δ − τt (> 0) . (14)

We now turn to employed agents. From the intratemporal optimality conditions (equation (9)),

their consumption is identical for all such agents and given by:

cet = u′−1 (1/zt) (> 0) . (15)

If an employed agent is employed in the next period, which occurs with probability α, then his

marginal utility of consumption will be 1/zt+1 (see (9)). If the agent moves into unemployment

next period, then his marginal utility will be u′
(
cit+1

)
, where by construction cit+1 is given by (13).

Then, substituting these marginal utilities into (10) under conjecture (12), the Euler equations

characterizing optimal bond holdings by employed agents are, for k = 1, . . . , n:

pt,k
zt

= αβEt

[
pt+1,k−1

zt+1

]
+ (1− α)βEt

u′
 n∑
j=1

pt+1,j−1 b
i
t,j + δ − τt+1

 pt+1,k−1

 . (16)

We restrict our attention to symmetric equilibria where bond holdings of all maturities are

identical across employed agents. From (16), the bond demands bit,j are functions of aggregate

variables only (and thus identical across employed agents in symmetric equilibrium), and we denote

by bet,k the quantity of k–period bonds held by any employed agents at date t. Since the total supply

of such bonds is Bk, market clearing requires that bet,k = Bk/ω
e, k = 1, . . . , n. Then, using (3) we

14



may rewrite (16) as follows:

pt,k = Et
[
me
t+1 pt+1,k−1

]
, (17)

where the (unique) pricing kernel generating bond prices is:

me
t+1 = αβ

zt
zt+1

+ (1− α)β zt u′

δ +
1− ωe

ωe

n∑
j=1

pt+1,j−1Bj +
n∑
j=1

pt+1,j Bj

 . (18)

Equations (17)–(18) pin down the price of k–period bonds as a function of the current and next

aggregate states, all future prices, and, crucially, aggregate bond supplies (note that Et is now, by a

slight abuse of notation, the expectation over aggregate uncertainty only). The pricing kernel (18)

is the sum of two distinct terms that encompass the two possible employment states of employed

agents in the next period. If the agent stays employed, which occurs with probability α, then labor

supply adjusts until the marginal utility of consumption equals 1/zt+1; this would be the only term

to appear were markets to be complete and were agents fully able to smooth out their idiosyncratic

income shocks. The second term in the right-hand side of (18) reflects the liquidation risk that

is associated with the possibility that the agent be hurt by an unfavorable change in employment

status. Bond quantities directly affect prices through their effect on the value of the liquidated

portfolio, which in turn feeds back into current equilibrium prices.

3.2 Conjectured price structure

We focus on the equilibrium where bond prices only depend on the realization of aggregate shocks.

From the literature on asset pricing with finite state space (e.g., Mehra and Prescott (1985)), we

conjecture the following expression for bond prices:

∀t ≥ 0,∀k ∈ {0, . . . , n},∀s ∈ {h, l} psk = Csk z
s, (19)

where the Csks are constants, and where Cs0 = 1/zs from our definition of a zero-maturity bond

price by its payoff (see Section 2.3). This price structure entails a form of stationarity, since bond

prices depend only on their maturity and the current aggregate state. In consequence, there are two

yield curves, one for each value of the aggregate state. Our existence proof will consist in showing

that such a stationary equilibrium exists.

The yield-to-maturity of a bond with maturity k = 1, . . . , n in state s = h, l can be defined by
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the usual logarithmic expression: rsk = −k−1 ln psk. The average yield curve is generated by average

yields, i.e., the sum of yields-to-maturity in each aggregate state weighted by their unconditional

frequency: rk = ηh rhk + ηl rlk.

3.3 Existence of the equilibrium

The existence of the full asset liquidation equilibrium is proved in two steps. We first derive our

existence result in an economy with bonds in zero net supply (so that no trade takes place) and

without aggregate shocks. We then show that the yield curve is continuous with respect to the

introduction of small, positive bond supplies and a small degree aggregate uncertainty, so that our

existence result directly extends to this more general case.

3.3.1 Existence conditions

The stationary distribution with four agent types was constructed under the conjecture that un-

employed agents are always borrowing-constrained, while no employed agent is. We now derive the

conditions under which this holds.

Conditions on agents’ initial wealth. In order to avoid the unnecessary complications implied

by the transitional adjustment of agents’ wealth towards the invariant cross-sectional distribution,

we assume that at the beginning of period 0 employed agents hold an initial quantity of bonds

be−1,k = Bk/ω
e with probability α, and hold no bonds with probability 1− α. Unemployed agents,

on the other hand, hold no bonds with probability ρ, and be−1,k = Bk/ω
e bonds with probability

1− ρ. As a result, from an ex ante point of view, agents are employed with positive bond holdings

with probability αωe, and unemployed with positive bond holdings with probability (1− ρ) ωu.

The initial joint distribution of employment status and bond holdings is thus identical to the

stationary distribution.

Conditions on parameter values. We now derive the conditions ensuring that all unemployed

agents are borrowing-constrained and hence do not participate in bond markets. Agents who are

unemployed at both dates t − 1 and t consume δ − τt (see (14)). If they become employed in the

next period, which occurs with probability 1 − ρ, then their marginal utility of consumption will

be 1/zt+1 (see (15)). However, if they remain unemployed, which occurs with probability ρ, then

from (14) their marginal utility of consumption will be u′ (δ − τt+1). Hence condition (12), which
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requires that the borrowing constraint bind for such agents, holds if and only if, for all k = 1, . . . , n:

pt,k u
′ (δ − τ (ht)) > β (1− ρ)Et

[
pt+1,k−1

zt+1

]
+ βρEt

[
pt+1,k−1u

′ (δ − τt+1)
]
, (20)

where τt is given by (3). On the other hand, agents who were employed at date t − 1 and who

become unemployed at date t consume their home production δ plus the liquidation value of their

bond portfolio. Again from equation (12), these agents face a binding borrowing constraint if and

only if, for all k = 1, . . . , n:

pt,k u
′

δ +
n∑
j=1

pt,j−1
Bj
ωe
− τt

 > β(1− ρ)Et

[
pt+1,k−1

zt+1

]
+ βρEt

[
pt+1,k−1u

′ (δ − τt+1)
]
. (21)

Since (21) implies (20), we only need to check that the equilibrium satisfies (21).

3.3.2 Existence of a no-trade equilibrium without aggregate shocks

If assets are in zero net supply, then there is no trade between agents and both the liquidation value

of the portfolio and taxes will equal zero. Without aggregate uncertainty zh = zl = 1, equation

(19) becomes pt,k = Ck (i.e., bond prices only depend on their maturity). Then, substituting (19)

into (18) and (21) and rearranging, condition (21) becomes:

(
α+ (1− α)u′ (δ)

)
u′ (δ) > 1− ρ + ρ u′ (δ) . (22)

Since u′ (δ) > 1 by assumption B, the right hand side of (22) is maximum at ρ = 1, in which

case (22) remains true for any feasible value of α; hence the no-trade equilibrium exists in the

economy without aggregate risk. Finally, note that in the no-trade steady state the consumption

levels of employed agents and agents falling into unemployment are u′−1 (1) and δ, respectively (see

(13)–(15)). By assumption B, the former is always greater than the latter, although they can be

made arbitrarily close to each other; this is also the case when both aggregate uncertainty and the

supply of bonds are sufficiently small.

3.3.3 Continuity of the yield curve w.r.t. bond supplies and aggregate shocks

We now introduce the following notation: B ≡ [Bn . . . B1]> is the vector of bond quantities for

the n maturities, Z ≡
[
zl zh

]> the vector of productivities, and C ≡
[
Chn C ln . . . C

h
0 C l0

]> the
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vector of price coefficients in both aggregate states and for the n maturities (see (19)). 1n and 0n

are vectors of length n containing respectively only ones and zeros. We then have the following

proposition:

Proposition 1 (Regularity of the yield curve) i) If B is in the neighborhood of 0n and Z in

the neighborhood of 12 , then C is a C1 function of B and of Z. ii) The equilibrium exists under

the condition that both aggregate uncertainty and bond supply be small.

All proofs are in the Appendix. The first part of Proposition 1 essentially states that, starting

from a no uncertainty/zero net supply situation (i.e., where (22) holds), a gradual increases in

aggregate risk or bond supplies does not cause the yield curve to jump. The second part of the

proposition is a direct implication of this continuity result: as the equilibrium exists in the zero

volume, no aggregate uncertainty case, the equilibrium also exists when volumes and aggregate

risk are sufficiently small (that is, (21) holds). From now on, all our results are derived in the

neighborhood of B = 0n and Z = 12. Moreover, and as indicated in the relevant propositions,

several of our results are derived under the assumption that idiosyncratic uncertainty is small, in

the sense that α is close to 1.4

4 Shape of the yield curve and the supply of bonds

This section analyses how the supply of bonds of different maturities affects the level and the slope

of the yield curve when agents are exposed to liquidation risk. We first provide a simple example

based on two bond maturities, i.i.d. aggregate shocks and quadratic utility. While the “long yield”

(i.e., the yield on long-maturity bonds) is not properly defined in this setup, the latter allows us

to illustrate the main workings of the liquidity-based demand for bonds in a particularly simple

way. We then analyse the general case where bonds of arbitrarily long maturities co-exist with

short-maturity bonds.

4.1 A simple example

Let us momentarily i) set the supply of bonds of maturity greater than two periods to zero, ii)

restrict the structure of aggregate shocks so that z = zh = 1+ε with probability 1/2, z = zl = 1−ε
4This latter assumption is borne out by the data. For example, estimating transition rates between employment

and unemployment from the U.S. Panel Study of Income Dynamics, Engen and Gruber (2001) find α = 0.97 at
quarterly frequency. Carrol et al. (2003) construct annual job-loss probabilities from the Current Population Survey
and find a value for the average household of 0.02 (i.e., α = 0.98).
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with complementary probability, where ε is small, and iii) assume that instant marginal utility takes

the form u′(c) = u1 − u2c (i.e., the utility function is quadratic), with u1, u2 > 0 and:

u1 − u2 δ > 0.

The latter condition ensures that households who only consume their home production income

enjoy positive marginal utility. Under our maintained assumption of small bond supply, the condi-

tion implies that the utility function is increasing and concave over the relevant range of individual

consumption levels.

Calling pk =
(
plk + phk

)
/2 the mean (across aggregate states) price of bonds of maturity k, we

show in Appendix B that in the vicinity of zero bond supply (B1 = B2 = 0) we have:

∂pk
∂Bi

< 0, k, i = 1, 2. (23)

The equation (23) states that an increase in the quantity of bonds of maturity 1 or 2 lowers

the average price of both bonds. Alternatively, we have ∂rk/∂Bi > 0 (with rk =
(
rhk + rlk

)
/2

here), i.e., an increase in the supply of bonds of either maturity raises the mean yield curve. This

effect of bond supplies on the level of the yield curve directly follows from the liquidity role of

bonds in our economy. Employed agents, who earn high labor income, wish to self-insure against

unemployment risk; available bonds of either maturity will serve precisely this purpose. A smaller

aggregate supply of bonds makes this liquidity support more valuable and produces higher bond

prices (lower bond yields), relative to the situation where bonds are more abundant. Conversely,

an increase in the supply of any type of bonds raises total liquidity, lowers the (expected) marginal

utility associated with higher bond holdings and hence lowers the price of both bonds (raises both

yields). In short, incomplete markets coupled with borrowing constraints make aggregate bond

demand downward-sloping.

Moreover, the slope of the average yield curve is found to be:

S =
1
2

(
β (1− α)u2 (B1 +B2) + βα

1
p1
− 1

2

)
ε2 + o

(
ε2
)
, (24)

where o(ε2) is a function verifying limε→0 o(ε2)/ε2 = 0. The slope S is composed of three terms,

scaled by the variance of the aggregate risk ε2. The first term, β (1− α)u2 (B1 +B2) /2, represents

19



the liquidation risk premium that agents require for holding long bonds. In contrast to one-period

bonds, which pay 1 for sure in the next period (i.e., regardless of the agent’s employment status),

long bonds have to be resold at an uncertain price in the next period if the agent becomes unem-

ployed. The premium thus reflects the fact that agents care about the future joint realization of

a bad individual income shock forcing them to sell the bond and a bad aggregate shock driving

the bond price downwards. The premium increases with the individual risk of having to liquidate

assets in the next period, 1− α (and disappears completely when individual risk is absent or fully

insured, i.e., when α = 1). This premium is also an increasing function of the total supply of bonds,

B1 +B2, because the entire portfolio affects an agent’s marginal utility and hence the benefit from

liquidation; as the supply of bonds increases, the marginal value of additional bonds (the “price of

liquidity”) falls and agents’ relative demand for long bonds, who have greater liquidation risk, falls

as well.

The second term, βα/(2p1), represents the risk premium for holding a long bond rather than a

short bond until the next period in the case where the agent remains employed (which occurs with

probability α). This premium moves negatively with the mean resell price of long bonds, p1: the

larger this price, the smaller this risk and implied premium.5 The third term, −1/4, comes out of

Jensen inequality.

We have derived these properties under extremely restrictive assumptions about agents’ utility,

the aggregate shock process and the number of bond maturities available in the economy. One

particularly unpleasant feature of our example is that the “long yield” is not properly defined: it

is identical to a two-period yield that fluctuates substantially with the aggregate state. We now

show that our results hold in the context of the general framework developped in the preceeding

sections, and in which we define the long yield as that of infinite-maturity bonds.

4.2 The general case

The following proposition summarizes some general properties regarding the shape of the yield

curve in either aggregate states.

Proposition 2 (Ranking and monotonicity of yield curves) Assume that α is close to 1.

Then, i) The yield curve in the good aggregate state is increasing in maturity and lies strictly
5Note that in the complete-market case we have α = 1 (since there is no liquidation risk) and p1 = β, so that

βα/p1 is equal to 1 and is thus unresponsive to changes in the supply of bonds. In contrast, when α < 1 the term
βα/p1 depends on p1 and hence on the Bis.
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below that in the bad aggregate state, which is decreasing in maturity. ii) Yields in both states

converge to a common limit rlim.

The ranking of yield curves essentially results from the fact that employed agents in the good

aggregate state earn higher incomes, and thus wish to save more and drive yields down, relative

to the bad aggregate state. The monotonicity property follows from the stationary Markovian

structure of aggregate shocks: conditionally on being in the good state, long bonds are riskier than

short bonds because they are more likely to be traded after a move into the bad state has taken

place; conversely, conditionally on being in the bad state long bonds bring the possibility of resale

in the good state before having reached maturity. Finally, bonds of infinite maturity can be seen as

bonds which pay one unit of goods in the (unconditional) mean aggregate state; hence the difference

in yields across states for these bonds is zero.

We can now state our main results regarding the impact of bond supplies on the shape of the

yield curve. Defining the slope of the yield curve rlim − r1 as the difference between the long and

the average short yield, we have:

Proposition 3 (Impact of bond supplies on the shape of the curve) i) Increasing the net

supply of bonds of any maturity raises all bond yields. ii) Assuming that α is close to 1, increasing

the supply of bonds of any maturity raises the slope of the yield curve.

The first statement in Proposition 3 establishes that a greater bond supply of any maturity

decreases the prices of bonds of all maturities (including the price of arbitrarily long bonds) in

both aggregate states, and hence shifts the average yield curve upwards. This results hold whenever

α < 1; when α = 1 no agent is ever constrained and this effect of bond supply on prices vanishes.

The second statement, which applies to the difference between infinite-maturity and one-period

bonds, relates to the change in relative bond prices induced by a change in the total supply of

bonds. As the total quantity of bonds increases, agents are better able to self-insure, leading to

lower bond prices. However, bonds of different maturities are imperfect substitutes for each other

here, as their probability of being liquidated before maturity (due to a bad idiosyncratic state)

differs, with early liquidation implying substantial business cycle risk (i.e., the risk of being sold at

low price due to a bad aggregate state). In this context, an increase in the supply of bonds favors

safer, shorter bonds.
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Let us illustrate (but clearly without quantitative ambition) the effect of bond supplies on the

shape of the yield curve by means of the following example. We proceed in two steps. First, we

calibrate the model so that it generates a realistic average yield curve and a realistic marginal impact

of bond supplies on the level of the yield curve. In so doing, we rely on Laubach’s (2009) recent

estimate according to which a one percentage point increase in the public debt to GDP ratio raises

the level of the yield curve by three or four basis points. Second, we compute the implied effect

of this marginal increase on the slope of the yield curve. We assume that u (c) = Ac1−σ / (1− σ),

with A = 0.4 and σ = 2.5, β = 0.94, α = 0.9995, ρ = 0.5, and δ = 0.2,
(
zl, zh

)
= (0.35, 0.6)

and
(
πl, πh

)
= (0.5, 0.8).6 In this example a very small amount of liquidation risk (i.e., a value

of α close to one) is sufficient to obtain a realistic effect of changes in public debt on the level of

the yield curve. We look at average yields on one-year, fifteen-year and thirty-year bonds, after

having checked numerically that our equilibrium exists for the parameters and bond supplies under

consideration. Table 1 summarizes our results.

Interest rates r1 r15 r30

Benchmark economy (%) 2.815 5.440 5.544

Economy after a debt increase (%) 2.850 5.478 5.582

Yield variation after the debt increase (bp) 3.50 3.79 3.81

Table 1: Effect of debt increase on the yield curve

The first line of Table 1 provides mean yields under zero bond supply, our benchmark economy.

The second line displays the equilibrium values of the same yields after debt-to-GDP ratio has been

raised by one percentage point. The difference in yields, expressed as basis points (bp), appears

in the third line. Note that the slope of the yield curve (i.e., the difference between yields on

thirty-period and one-period bonds) is raised by 0.3 bp after the increase in bond supplies, which

is roughly one tenth of the level effect under our calibration.
6In this numerical illustration we relax our normalizing assumption zh > 1 > zl. This does not affect our results.
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5 Time-varying liquidation risk and the Expectations Hypothesis

We have thus far restricted our attention to equilibria where the aggregate state only affects labor

productivity. One salient feature of business cycles is that aggregate shocks also affect the unem-

ployment rate and thus the probabilities of transiting into and out of unemployment. We now study

how time-variations in unemployment probabilities and the implied liquidation risk affect the yield

curve. To focus on the empirically relevant case, we assume in this section that πh > πl, that is,

relatively long booms are broken by shorter recessions.

The following structure allows us to keep the analysis tractable. Assume that the individual

probability of staying employed in the next period only depends on the current aggregate state:

αs ≡ Pr(eit+1 = 1
∣∣ eit = 1, ht = s), s = l, h. This transition rate will affect the employment rate

in the next period, and we assume that this latter rate can only take two values, denoted ωe,s,

s = l, h. If, for instance, the aggregate state is h at date t, then αt = αh and ωet+1 = ωe,h. A

natural assumption is that the bad aggregate state is associated with both higher unemployment

and greater unemployment risk, i.e., ωe,h > ωe,l and αh > αl.

Simple flow accounting implies that the probabilities of exiting unemployment consistent with

this joint assumption only depend on the current s and past aggregate state κ and are given by the

solution to the following system, given αs, ωe,κ where s, κ = l, h:

ωe,h = ωe,hαh +
(
1− ρhh

) (
1− ωe,h

)
, ωe,h = ωe,lαh +

(
1− ρlh

) (
1− ωe,l

)
,

ωe,l = ωe,lαl +
(
1− ρll

) (
1− ωe,l

)
, ωe,l = ωe,hαl +

(
1− ρhl

) (
1− ωe,h

)
,

where ρκζ (κ, ζ = l, h) is the probability of remaining unemployed in the next period when the

current aggregate state is ζ and the aggregate state in the previous period was κ. For example, the

first equation states that an economy that was in state h at dates t and t− 1 has an employment

rate of ωe,h at date t and will have the same employment rate at date t + 1 (the left-hand side);

given that a share αh of currently employed agents will stay so in the next period, it must be the

case that a share ρhh of currently unemployed agents will transit into employment, in order to

produce an employment rate of exactly ωe,h at date t + 1. By assumption, the same employment

rate will prevail at date t+ 1 if ht = h but ht−1 = l, as stated in the second equation.

Our bond pricing equations remain similar to (17), except that α and ωe are now time-varying.

This alters bond prices in two ways. First, time-variations in α will cause changes in idiosyncratic
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unemployment risk, and thus in the precautionary demand for bonds by employed agents. Second,

time-variations in ωe will alter the number of agents who participate in bond markets and thus the

quantity of bonds held by any single agent in equilibrium. Hence both the demand and the (per

agent) supply will vary along the business cycle.

We conjecture that the price of bonds for each maturity is a function of both current and past

aggregate states, so that the model now generates four yield curves instead of two (The previous

aggregate state matters because the value of the liquidated portfolio depends on previous individual

bond holdings). We call pκζk the price of a bond of maturity k if the current aggregate state is ζ

and the past state is κ. Pricing equations (17)–(18) now become:

pκζk
zζ

= β
∑
s=h,l

αζ π̃ζs pζsk−1

zs
+ (1− αζ)π̃ζspζsk−1 u

′

δ +
n∑
j=1

pζsj−1

Bj
ωe,κ

− τ ζs
 , (25)

where the π̃ζss summarize the transition probabilities across aggregate states ( i.e., π̃hh = πh,

π̃hl = 1 − πh, π̃ll = πl and π̃lh = 1 − πl), and where from (3) the lump-sum tax is τ ζs =∑n
k=1

(
pζsk−1 − p

ζs
k

)
Bk. As in the economy with constant unemployment risk, we can check that

prices are proportional to the current aggregate state: pκζk = C̃κζk zζ , where C̃κζk is a constant that

only depends on the maturity of the bond, k, and on aggregate states ζ and κ. Using the usual

continuity argument we can show that this equilibrium with four yield curves (and implied tax

levels) exists provided that ωe and α do not vary too much, and also that our previous results

about the effect of volumes on the shape of the yield curve carry over to this more general case.

Before we turn to the cyclical pattern of bond premia implied by changes in idiosyncratic risk,

let us discuss briefly their implications for the shape of the average yield curve. The following

proposition summarizes how the latter is affected by the volatilities of unemployment risk and the

unemployment rate.

Proposition 4 (Effect of time-varying idiosyncratic risk) Suppose that αh and αl are close

to 1, with αh > αl. Then a mean-preserving increase in the variance of α i) raises the yield curve,

and ii) decreases the slope of the yield curve.

To understand the first statement in Proposition 4, consider the joint effect of a rise in αh

and a fall in αl. Employed agents in state h face limited unemployment risk and thus require less

self-insurance; the implied lower demand for bonds lowers prices and raises yields. Conversely,
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employed agents in state l face greater unemployment risk, leading to an increased demand for

bonds and lower yields. However, employed agents have higher labour income and thus a lower

marginal utility of consumption in state h than in state l, so the higher bond demand in the former

aggregate state dominates the lower demand in the latter, leading to a higher average yield curve

than under constant unemployment risk. The second result describes the effect of a change in the

variance of idiosyncratic risk on the slope of the yield curve. Consider the same joint change in

αh and αl. From our assumption that πh > πl, the economy is more often in the good aggregate

state than in the bad aggregate state, and hence the slope of the mean yield curve is dominated

by that in the good state. Since idiosyncratic risk is lower in that state, so are liquidation risk and

the implied premium commanded by long bonds over shorter bonds.

Let us now analyze how changes in idiosyncratic risk lead to the rejection of the Expectations

Hypothesis, which states that bond premia are not time-varying (Campbell and Shiller (1991)).

For the sake of simplicity we focus on the time-pattern of term premia for two-period bonds and

also assume that the aggregate state affects idiosyncratic probabilities but not technology (i.e.,

zh = zl = 1). More specifically, we define the premium on a two-period bond as the difference

between the long yield and the average of future expected short yields, i.e.,

TP s = rs2 −
1
2

(rs1 + Esr1) , s = h, l,

where Esr1 is the expected value of the future short yield, conditionally on the current state being s.

We measure the degree of time-variations in the term premium by the difference ∆TP ≡ TP h−TP l.

We consider a small departure from the constant idiosyncratic risk case, i.e., αh = α + η and

αl = α− η, with η > 0 small. We show in Appendix E that ∆TP is then approximately given by:

∆TP =

(
πh + πl − 1

) (
πh − πl

)
(α+ (1− α)u′ (δ))2

(
u′ (δ)− 1

)2
η2 > 0. (26)

Expression (26) implies that changes in liquidation risk generate time-varying risk premia along

the business cycle, and thus contribute to the rejection of the Expectations Hypothesis. The reason

for this is that when bad times are expected (i.e., next period’s unemployment will be high) then

agents’ demand for liquidity increases and hence they are ready to accept a lower premium on long

bonds. This implies that low premia are associated with low future output, as is consistent with

the evidence (e.g., Hamilton and Kim (2002)).
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6 Welfare

We now turn to the welfare impact of the supply of government bonds, both at the level of each

agent type and in the aggregate.7 For the sake of simplicity, we carry out this analysis in an

economy without aggregate risk (i.e., zl = zh = 1) and where idiosyncratic uncertainty is not

time-varying (i.e., αh = αl). Since all currently employed agents hold the same portfolio while all

currently unemployed agents hold no assets, the type of an agent depends only on their current

and previous employment states. We then have the following proposition:

Proposition 5 (Bond supplies and welfare) i) A greater supply of bonds always increases the

welfare of agents who stay employed or fall into unemployment, but increases the welfare of agents

who leave unemployment or stay unemployed if and only if β > [α+ (1− α)u′(δ)]−1; and ii) a

greater bond supply increases ex ante welfare (at date 0 and before agents know their type) if and

only if β > α+ρ−1
α+(1−α)u′(δ) .

Proposition 5 compares the intertemporal welfare of the four agent types in two economies that

marginally differ in their supply of bonds. Agents who remain employed or fall into unemployment

have accumulated assets in the previous period and thus currently enjoy greater self-insurance

as the quantity of government bonds rises. In contrast, agents who stay unemployed or leave

unemployment start the current period with no assets (since their held no assets at the end of the

previous period), so that their current utility can only be negatively affected by the higher taxes

associated with greater bond supply. For these individuals, the only source of higher intertemporal

welfare is the prospect of benefiting from better self-insurance opportunities in the future, if they

are sufficiently patient. When agents do not yet know their type (the second statement of the

proposition), aggregate welfare is the average of each type’s intertemporal utility weighted by their

population sizes. Again, agents must be sufficiently patient for the welfare loss possibly suffered by

some when they discover their type to be outweighed by the welfare gains enjoyed by others.

It is instructive to compare the welfare effects of greater liquidity to those generated by a

direct unemployment-insurance scheme. For simplicity we consider the impact of a social-security

system providing a constant benefit ν to the unemployed, which is funded by a social contribution

ι = (ωu/ωe) ν paid by the employed (this implies that the scheme is balanced regardless of taxes,
7Aiyagari and McGrattan (1998) and Floden (2001) have offered quantitative assessments of the aggregate welfare

effect of changes in the stock of one-period government debt. Our analytical framework allows us to analyze this
welfare impact on each agent type and hence to perform Pareto-comparisons of equilibria.
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τt). We then have the following proposition:

Proposition 6 (Unemployment insurance and welfare) i) Higher unemployment benefits al-

ways increase the welfare of the currently unemployed, but increase the welfare of the currently em-

ployed if and only if β > [ρ+ (1− ρ)u′(δ + ν)]−1. ii) Higher unemployment benefits always increase

ex ante welfare.

The second statement is unsurprising: ex ante, social insurance makes up (at least partially)

for the lack of private insurance through contingent securities and must thus be welfare-enhancing.

Matters are different from an ex post point of view, however, since the currently employed bear

the cost of higher social contributions; hence unless they are sufficiently patient to contemplate the

possibility that they will benefit from better insurance in the future, their welfare will be negatively

affected by more generous benefits.

Comparing the first statements in Propositions 5 and 6 shows that it is not the same types

who benefit in either policy: those who stay unemployed in the current period may suffer from

higher bond supply and taxes but would benefit from higher unemployment benefits, while the

opposite is true of agents who stay employed in the current period. Moreover, some agents (i.e.,

those currently leaving unemployment) may suffer from both policies. Hence there is in general no

Pareto-improving combination of these two policies unless agents are sufficiently patient.

7 Concluding remarks

This paper has analyzed the term-structure implications of an incomplete markets, general equi-

librium model where agents hold bonds to self-insure against idiosyncratic shocks and face the risk

of having to liquidate bonds in bad times. Our focus on the equilibrium with full asset liquidation

has allowed us to derive analytical expressions for bond prices at any maturity and to study how

changes in bond supplies or idiosyncratic volatility alter the shape of the yield curve as well as the

welfare of (heterogeneous) agents. Our results are in contrast with the complete-markets model

(e.g., the C-CAPM), where bond supplies do not affect the yield curve, and where full consump-

tion insurance ensures that agents never have to sell assets before maturity to provide for current

consumption.

It seems natural, when considering the impact of liquidation risk on asset prices, to start by

focusing on real, zero-coupon bonds, which by construction bear no income risk and only differ by

27



their maturity. However, many long assets (e.g., equities) are likely to be affected by this risk, and

hence to command a higher premium in equilibrium than that under complete markets. Similarly,

the same properties should prevail in a monetary version of the model which would generate a

nominal yield curve, regarding which a wealth of evidence is available. We leave both of these lines

of investigation for future research.
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A Proof of Proposition 1

We express the pricing equations in matrix form. Let first define, for s = h, l,

Cs0 = 1/zs, C ≡
[
Chn−k C ln−k

]>
k=0,...,n

, and X ≡ [zh zl B>], with B = [Bn−k]
>
k=0,...,n−1 .

Moreover, we use the following simplifying notation:

vs ≡ v

δ + zs
n∑
j=1

(
1− ωe

ωe
Csj−1 + Csj

)
Bj

 , whether v = u′ or u′′ and s = h, l. (27)

For example, u′h ≡ u′
δ + zh

n∑
j=1

(
1− ωe

ωe
Chj−1 + Chj

)
Bj

 .

0m×n is the m× n null matrix, and we define 1cond. as the function that takes value 1 when cond.

is true and to 0 otherwise. Finally, we define the 2× 2 matrix M as:

M(C,X) ≡ β

 πh(α+ (1− α) zh u′h) (1− πh)(α+ (1− α) zh u′h)

(1− πl)(α+ (1− α) zl u′l) πl(α+ (1− α) zl u′l)

 . (28)

Then, the pricing equations (17)–(19) can be written as follows:

[
Chk C lk

]>
= M(C,X) ·

[
Chk−1 C lk−1

]>
for k = 1, . . . , n. (29)

By stacking equalities, we rewrite (29) as f(C,X) = 0(2n+2)×1, where f is the following C1 function:

f(C,X) ≡ C −



02×2 M(C,X) 02×2 . . . 02×2

...
. . . . . .

...
...

. . . M(C,X)

02×2 . . . 02×2


C −



0
...

0

1/zh

1/zl


.

To prove that C is a C1 function of B and Z, we show that the Jacobian of f w.r.t. C is invertible.

The derivatives of f w.r.t.
(
Csn−i

)
i=0,...,n

can be written in a compact form as:

∂f

∂Csn−i
= Γsn−i +Ks

n−i for i = 0, . . . , n.
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with Γsn−i defined, for i = 0, as Γsn ≡ [1s=h, 1s=l, 02n]> and, for i = 1, . . . , n, as:

Γsn−i ≡



02(i−1)×1

−β (α+ (1− α)zsu′s) π̃hs

−β (α+ (1− α)zsu′s) π̃ls

1s=h

1s=l

02(n−i)×1


←− Rank 2i+ 1

←− Rank 2i+ 2,

where π̃hh ≡ πh, π̃lh ≡ 1− πl, π̃ll ≡ πl, π̃hl ≡ 1− πh (cf. Section 5). Ks
n−i is defined as:

Ks
n−i ≡ −β (1− α)

[
1− ωe

ωe
Bn+1−i 1i>0 +Bn−i 1i<n

]
(zs)2 u′′s

×
[
π̃hsCsn−1, π̃

lsCsn−1 . . . , π̃
hsCs0 , π̃

lsCs0 , 0, 0
]>

for i = 0, . . . , n.

The Jacobian DfY = ( ∂f
∂Chn

, ∂f
∂Cln

, . . . , ∂f
∂Chn−i

, ∂f
∂Cln−i

, . . . , ∂f
∂Ch0

, ∂f
∂Cl0

) of f w.r.t. to C can be expressed

as the sum of an upper triangular matrix with only 1s on its diagonal and a matrix that is equal

to 0 when B = 0 (because Ks
n−i = 0 if B = 0). The Jacobian is thus invertible for B = 0. Then,

the implicit function theorem allows us to prove the first statement in the proposition. C is now

a continuous (in fact C1) function of
[
B> Z>

]
in a neighborhood V1 of

[
0>n 1>2

]
. Moreover, if[

B> Z>
]

=
[
0>n 1>2

]
, then C satisfies conditions (21). By continuity, there exists a neighborhood

V2 ⊂ V1, such that condition (21) is satisfied if
[
B> Z>

]
∈ V2. QED.

B The two-maturity example

From (17)–(18) and our assumed shock process and utility function, one-period bond price is:

ps1 = Cs1z
s =

αβzs

2

∑
s′=l,h

1
zs′

+
(1− α)βzs

2

∑
s′=l,h

[
u1 − u2

(
δ +

1− ωe

ωe
(B1 +B2C

s′
1 zs

′
) + (B1C

s′
1 +B2C

s′
2 )zs

′
)]

.

where (s, s′) ∈ {l, h}2 are the aggregate state in the current and the next period. Dividing both

sides by zs gives Ch1 = C l1 ≡ C1.
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This in turn implies that the price of a two-period bond is:

ps2 =Cs2z
s = αβzsC1

+
(1− α)βzs

2

∑
s′=l,h

[
u1 − u2

(
δ +

1− ωe

ωe
(B1 +B2C1 z

s′) + (B1C1 +B2C
s′
2 )zs

′
)]

C1z
s′ .

Dividing both sides by zs also gives Ch2 = C l2 ≡ C2. C1 and C2 then solve:

C1 =
αβ

2

∑
s′=l,h

1
zs′

+
(1− α)β

2

∑
s′=l,h

(
u1 − u2

(
δ +

1− ωe

ωe
(B1 +B2C1z

s′) + (B1C1 +B2C2)zs
′
))

,

C2

C1
= αβ +

(1− α)β
2

∑
s′=l,h

(
u1 − u2

(
δ +

1− ωe

ωe
(B1 +B2C1z

s′) + (B1C1 +B2C2)zs
′
))

zs
′
.

Finally, note that since the average of z is 1, C1 and C2 are also the average prices of one- and two-

period bonds, respectively. For clarity we also denote these prices p1 and p2. Under the maintained

assumptions that bond supplies and aggregate shocks are small, the previous equations give:

p1 = αβ
(
1 + ε2

)
+ (1− α)β

(
u1 − u2

(
δ +

1− ωe

ωe
(B1 +B2p1) +B1p1 +B2 p2

))
+ o(ε2),

p2

p1
= αβ + (1− α)β

(
u1 − u2

(
δ +

1− ωe

ωe
(B1 +B2 p1

(
1 + ε2

)
) + (B1 p1 +B2 p2)

(
1 + ε2

)))
+ o(ε2),

where o(ε2) satisfies limε→0 o(ε2)/ε2 = 0. From the first expression we get:

∂p1

∂B1

∣∣∣∣
B1=B2=0

= − (1− α)βu2

(
1− ωe

ωe
+ p1

)
< 0,

∂p1

∂B2

∣∣∣∣
B1=B2=0

= − (1− α)βu2

(
1− ωe

ωe
p1 + p2

)
< 0.

From the second expression we get:

∂p2

∂B1

∣∣∣∣
B1=B2=0

= (αβ + (1− α)β (u1 − u2δ))
∂p1

∂B1

∣∣∣∣
B1=B2=0

− p1 (1− α)βu2

(
1− ωe

ωe
+ p1

(
1 + ε2

))
< 0,

∂p2

∂B2

∣∣∣∣
B1=B2=0

= (αβ + (1− α)β (u1 − u2δ))
∂p1

∂B2

∣∣∣∣
B1=B2=0

− p1 (1− α)βu2

(
1− ωe

ωe
p1 + p2

)(
1 + ε2

)
< 0.

The mean yield-to-maturity of a k-period bond is rk = −
∑

s=l,h ln psk/2k, k = 1, 2. Hence,

r1 = −1
2

∑
s=l,h

lnC1z
s = − lnC1 −

ln zh + ln zl

2
= − ln p1 +

1
2
ε2 + o(ε2),

r2 = −1
4

∑
s=l,h

lnC2z
s = − lnC2

2
− ln zh + ln zl

4
= − ln p2

2
+

1
4
ε2 + o(ε2),
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so that lower mean bond prices imply higher mean yields. The slope of the mean yield curve is:

S = r2 − r1 = −1
2

ln
p2

p2
1

− 1
4
ε2 + o(ε2).

From our expressions for p1 and p2/p1 we get:

p2

p1
= p1 − β

[
α+ (1− α)u2

(
1− ωe

ωe
B2 p1 +B1 p1 +B2 p2

)]
ε2 + o(ε2),

p2

p1

(
1 + β (1− α)u2B2 p1 ε

2
)

= p1 − β
[
α+ (1− α)u2

(
1− ωe

ωe
B2 p1 +B1 p1

)]
ε2 + o(ε2),

p2

p1
= p1

(
1− β (1− α)u2B2 p1 ε

2
)
− β

[
α+ (1− α)u2

(
1− ωe

ωe
B2 p1 +B1 p1

)]
ε2 + o(ε2),

p2

p1
= p1 − β [α+ (1− α)u2 p1 (B1 +B2)] ε2 + o(ε2). (30)

Using (30) and rearranging, we find (24) in the body of the paper.

C Proof of Proposition 2

C.1 Ranking of yield curves

We prove by inference that Chk z
h > C lkz

l (k ≥ 1) for B = 0. By continuity this property will also

hold when B is positive but small.

1. The result holds for k = 1: from (29), Ch1 z
h > C l1z

l is equivalent to α (zh−zl)
(

1−πl
zh

+ 1−πh
zl

)
>

(1− α)u′(δ)
(
zl − zh

)
, which is true since zh > zl.

2. Assume that Chk−1z
h > C lk−1z

l, for any k ≥ 2. From (29), Chk z
h > C lkz

l if and only if:

α

((
πh + (πl − 1)

zl

zh

)
zhChk−1

zl C lk−1

+
zh

zl
(1− πh)− πl

)
>

(1− α)u′(δ)

(
πlzl − (1− πh)zh − zh(πh + (πl − 1)

zl

zh
)
zhChk−1

zl C lk−1

)
. (31)

Since πh + (πl − 1) z
l

zh
> 0 and zhChk−1 > zl C lk−1, for (31) to hold it is sufficient to show that

α (zh − zl)
(

1−πl
zh

+ 1−πh
zl

)
> (1− α)u′(δ)

(
zl − zh

)
(as in the k = 1 case). QED.
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C.2 Monotonicity of yield curves

We show that rhk ≤ rhk+1 (the proof for rlk is similar). This inequality is equivalent to:

zh
(
Chk

)k+1
≥
(
Chk+1

)k
. (32)

For α close to 1, zl = 1 and zh > 1 but close to 1, the coefficients Cs are approximately:

Chk = βk
(

1− zh − 1
2− πh − πl

(
1− πl + (1− πh)(πh + πl − 1)k

))
+ o

(
zh − 1

)
+O (1− α) , (33)

Clk = βk
(

1− zh − 1
2− πh − πl

(
1− πl − (1− πl)(πh + πl − 1)k

))
+ o

(
zh − 1

)
+O (1− α) . (34)

This can be shown recursively. First, equations (33)–(34) are true for k = 0 since Ch0 = 1/(1 + zh−

1) ≈ 1− (zh − 1) and C l0 = 1. Second, if (33)–(34) hold for k ≥ 0, then by equality (29) they also

hold for k + 1.

To conclude the proof, using (33)–(34) and zh close to 1, inequality (32) can be written as:

1− (πh + πl − 1)k
(
k + 1− k (πh + πl − 1)

)
≥ 0.

To show that the last inequality holds, we define Pk(t) = 1 − tk(k + 1 − k t) for 0 ≤ t ≤ 1.

Then, for k = 0 we have P0(t) = 0, whereas for k ≥ 1 we have Pk(0) = 1, Pk(1) = 0 and

P ′k(t) = k(k+1)tk−1(t−1) ≤ 0. This implies that Pk(t) ≥ 0, for 0 ≤ t ≤ 1. Since 0 ≤ πh+πl−1 ≤ 1,

this establishes the result. QED.

C.3 Value of the long-run interest rate

We diagonalize the matrix M(C,X) defined in (28): M(C,X) = β QDQ−1, where Q is a 2 × 2

invertible matrix and D = Diag(d11, d22) a diagonal matrix with:

d22 = H + d11 =
1
2

(
α
(
πh + πl

)
+ (1− α)

(
zhu′hπh + zlu′lπl

)
+H

)
,

H ≡

 (
α(πh + πl) + (1− α)(zhπh u′h + zlπl u′l)

)2
−4(πh + πl − 1)(α+ (1− α)zh u′h)(α+ (1− α)zl u′l)


1/2

> 0.

We check that H is well defined and that −1 < d11/d22 < 1. The iteration of (29), after diagonal-
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ization, now yields the following expressions for bond prices:

 phk

plk

 = (βd22)k

 zh 0

0 zl

 Q
 (d11/d22)k 0

0 1

 Q−1

 Ch0

C l0

 .
As |d11/d22| < 1, limk→∞ (d11/d22)k = 0 and we get limk→∞

1
(βd22)k

[
phk plk

]> = Const., where

Const. is a constant 2×1 vector that does not depend on k. This implies that limk→∞ k
−1 ln phk

(βd22)k
=

limk→∞ k
−1 ln plk

(βd22)k
= 0. From the definition of interest rates, the common limit r̃lim in both states

of the world is:

lim
k→∞

rhk = lim
k→∞

rlk = r̃lim = − ln (βd22) . (35)

D Proof of Proposition 3

D.1 Impact of bond supplies on prices

We prove the result by inference for Cζk , ζ = h, l. Taking the derivative of (29) w.r.t. to Bi,
1 ≤ i ≤ n, we get:

∂Cζk
∂Bi

= β
∑
s=h,l

π̃ζs

(α+ (1− α)zsu′s)
∂Csk−1

∂Bi
+ (1− α)Csk−1(zs)2

 n∑
j=1

(
1− ωe

ωe

∂Csj−1

∂Bi
+
∂Csj

∂Bi

)
Bj +

1− ωe

ωe
Csi−1 + Csi

u′′s
 .

(36)

where u′s and u′′s are given by (27), and where, as before, π̃ζs is defined as follows: π̃hh ≡ πh,

π̃lh ≡ 1− πl, π̃ll ≡ πl, π̃hl ≡ 1− πh (cf. Section 5).

1. The result stated in the proposition holds for k = 1, since (36) yields the following first-order

approximation for small levels of bond supply (recall that Cs0 = 1/zs):

∂Cζ1
∂Bi

≈ β (1− α)u′′ (δ)
∑
s=h,l

π̃ςs zs
[

1− ωe

ωe
Csi−1 + Csi

]
< 0.

2. Suppose that the result holds for k − 1:
∂Chk−1

∂Bi
,
∂Clk−1

∂Bi
< 0. Since Csj−1 is a C1 function of Bi,

∂Csj−1

∂Bi
is continuous in Bi and Bj

∂Csj−1

∂Bi
is negligible relative to Csi−1 for small bond supplies.

Then, (36) implies that ∂Chk
∂Bi

< 0, so that greater bond supply decreases prices (i.e., raises

yields). QED.
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D.2 Impact of bond supplies on the slope of the yield curve

Using the expression for r̃lim in (35) and that for r1 computed from (29), we find that when α

is close to 1 the derivative of ∆ w.r.t. to Bi, i ≤ n, is first-order approximated by the following

expression:

∂∆
∂Bi

≈ (1− α)(1− πl)(1− πh)
2− πh − πl

[
zl
∂u′l

∂Bi
− zh ∂u

′h

∂Bi

] [
zh

zh (1− πh) + πhzl
− zl

zl (1− πl) + πlzh

]
,

(37)

where ∂u′s

∂Bi
= zs

(∑n
j=1

(
1−ωe
ωe

∂Csj−1

∂Bi
+

∂Csj
∂Bi

)
Bj + 1−ωe

ωe Csi−1 + Csi

)
u′′s. When bond supplies are

small we have that ∂u′s

∂Bi
= zs(1−ωe

ωe Csi−1 +Csi )u′′ (δ). The first term in the right-hand side of (37) is

positive. The second term is positive since Chk z
h > C lkz

l (k ≥ 1) and zh > zl. The third term is

also positive since zh > zl. QED.

E Proof of Proposition 4

We define the vector Ck = [Chhk , C lhk , C
hl
k , C

ll
k ]> and, for si = h, l and i = 1, 2, 3:

u′ (s1s2s3) = u′

δ +

n∑
j=1

(
1− we,s1
ωe,s1

Cs2s3j−1 + Cs2s3j

)
zs3Bj

 ,

M̃ =


πh
[
αh + (1− αh)zhu′ (hhh)

]
0

(
1− πh

) [
αh + (1− αh)zlu′ (hhl)

]
0

πh
[
αh + (1− αh)zhu′ (lhh)

]
0

(
1− πh

) [
αh + (1− αh)zlu′ (lhl)

]
0

0 (1− πl)
[
αl + (1− αl)zhu′ (hlh)

]
0 πl

[
αl + (1− αl)zlu′ (hll)

]
0

(
1− πl

) [
αl + (1− αl)zhu′ (llh)

]
0 πl

[
αl + (1− αl)zlu′ (lll)

]

 .

We obtain the following recursion, which determines equilibrium bond prices (cf. (25)):

Ck = β M̃ Ck−1. (38)

We first prove the following general result: for a function Φ of Y , where Y takes value y1 with

probability q and y2 < y1 with probability 1 − q, the impact of a mean-preserving increase in the
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variance of Y (i.e., an increase in V [Y ] holding E [Y ] constant) on Φ is:

∂Φ
∂V [Y ]

∣∣∣∣
E[Y ]constant

=
1

2q(1− q)(y1 − y2)

(
(1− q) ∂Φ

∂y1
− q ∂Φ

∂y2

)
,

which can be shown by expressing y1 and y2 as functions of E [Y ] and V [Y ] and computing their

derivatives w.r.t. V [Y ]:

y1 = E [Y ] + (1− q)

√
V [Y ]
q(1− q)

,
∂y1

∂V [Y ]
= (1− q) 1

2
√
q(1− q)V [Y ]

,

y2 = E [Y ]− q

√
V [Y ]
q(1− q)

,
∂y2

∂V [Y ]
= −q 1

2
√
q(1− q)V [Y ]

. (39)

This establishes the result since V [Y ] = q(1− q) (y1 − y2)2 .

E.1 Effect of the variance of α at zero volume

Suppose that ωe,s = ω (s = h, l) and that bonds are in zero net supply. Then, (38) becomes:

[
Chk C

l
k

]>
= βM̂k

[
1/zh 1/zl

]>
,

with M̂ =

 πh
[
αh + (1− αh)zhu′ (δ)

] (
1− πh

) [
αh + (1− αh)zlu′ (δ)

]
(
1− πl

) [
αl + (1− αl)zhu′ (δ)

]
πl
[
αl + (1− αl)zlu′ (δ)

]
 .

The short yield. The short yield is r1 = −ηh lnCh1 z
h − ηl lnC l1zl (cf. (3.2)). Using (39) with

q = ηh = 1− ηl, we find after some algebra that in the vicinity of αh = αl = α we have:

(αh − αl) ∂r1

∂V [α]

∣∣∣∣
E[α] constant

=
(πh + πl − 1)

(
1
zl
− 1

zh

)
u′(δ)

2
(
α(πh

zh
+ 1−πh

zl
) + (1− α)u′(δ)

)(
α(1−πl

zh
+ πl

zl
) + (1− α)u′(δ)

) > 0.

The long yield. We use an argument similar to that in Section C.3. Since

limk→∞ k
−1[ln Phk

βk λ̂k
, ln P lk

βk λ̂k
] = 02, where λ̂ is the largest eigenvalue of M̂ , we have that r∞ =

− lnβλ̂ and that

(αh − αl) ∂r∞
∂V [α]

= − 1

2λ̂

[
1
ηh

∂λ̂

∂αh
− 1
ηl

∂λ̂

∂αl

]
, where

∂r∞
∂αs

= − 1

λ̂

∂λ̂

∂αs
, s = h, l.
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Some algebra shows that:

λ̂ =
1

2

[
πh(αh + (1− αh)zh u′ (δ)) + πl(αl + (1− αl)zl u′ (δ))

+
(

(πh(αh + (1− αh)zh u′ (δ))− πl(αl + (1− αl)zl u′ (δ)))2 + 4(1− πl)(1− πh)(αl + (1− αl)zh u′ (δ))(αh + (1− αh)zl u′ (δ))
) 1

2
]
.

Assuming that αh and αl are both close to 1, so that λ̂ ≈ 1, we obtain:

(αh − αl) ∂r∞
∂V [α]

=
(πh + πl − 1)(zh − zl)u′(δ)

2
> 0,

(αh − αl) ∂∆
∂V [α]

=
(πh + πl − 1)(zh − zl)u′(δ)

2

1− 1(
πh + (1− πh) zh

zl

)(
(1− πl) zl

zh
+ πl

)
 .

After some manipulations, we find that the curve flattens if and only if πl(1−πh)zh < πh(1−πl)zl,

which is equivalent to πh > πl when z is sufficiently close to 1.

F Proof of Equation (26)

When zh = zl = 1, the coefficients determining the price of one- and two-period bonds are:



Ch1 = βπh
(
αh + (1− αh)u′(δ)

)
+ β(1− πh)

(
αh + (1− αh)u′(δ)

)
,

C l1 = βπl
(
αl + (1− αl)u′(δ)

)
+ β(1− πl)

(
αl + (1− αl)u′(δ)

)
,

Ch2 = βπh
(
αh + (1− αh)u′(δ)

)
Ch1 + β(1− πh)

(
αh + (1− αh)u′(δ)

)
C l1,

C l2 = βπl
(
αl + (1− αl)u′(δ)

)
C l1 + β(1− πl)

(
αl + (1− αl)u′(δ)

)
Ch1 .

The term premium in state s = h, l is TP s = rs2 − 1
2 (rs1 + Esr1). Expressing interest rates as

functions of prices, one deduces for ∆TP = TP h − TP l (zh = zl = 1):

e−2∆TP =
Ch2
C l2

(C l1)1+πl (Ch1 )1−πl

(Ch1 )1+πh (C l1)1−πh =
Ch2
C l2

(
C l1
Ch1

)πh+πl

.

Substituting the coefficients Cs by their values and taking a second order approximation with

αh = α+ η and αl = α− η, one finds (26) in the body of the paper.
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G Proof of Proposition 5

Agents can be of four different types only here, and we denote by ij, with i, j = e, u the type of

an agent who is in individual state j in the current period and was in individual state i in the

previous period, where e stands for “employed” and u for “unemployed”. Let U denote the vector

of instantaneous utilities: U =
[
u(ck)− lk

]
k=ee,ue,eu,uu

(no time index since zt = 1). The cks that

appear in U are given in Section 3.1, while labor supplies can be computed as residuals from the

budget constraints of employed agents (see (5)) since the steady state consumption levels and bond

holdings of the different types of agents are known. We simplify these expression using the fact

that in the no-trade equilibrium Ck = β (α+(1−α)u′(δ))Ck−1 ≡ θCk−1 (cf. (28)), and we evaluate

the derivatives of U w.r.t. the Bks at the no-trade equilibrium:

U =



u(u′−1(1))− u′−1(1)− 1−ωe
ωe

∑n
k=1(Ck − Ck−1)Bk

u(u′−1(1))− u′−1(1)−
∑n

k=1(Ck−1 + Ck
1−ωe
ωe )Bk

u(
∑n

k=1(Ck−1
1−ωe
ωe + Ck)Bk + δ)

u(δ −
∑n

k=1(Ck−1 − Ck)Bk)


,

∂U

∂Bk
= Ck−1



−1−ωe
ωe (θ − 1)

−(1 + 1−ωe
ωe θ)

(1−ωe
ωe + θ)u′(δ)

−(1− θ)u′(δ)


.

Let U denote the vector of intertemporal utilities: U =
∑∞

k=0 β
k Ωk U =

∑∞
k=0 β

kQDkQ−1 U ,

where Ω (the transition matrix for the four types {ee ue eu uu}), Q and D are given by:

Ω =



α 0 1− α 0

α 0 1− α 0

0 1− ρ 0 ρ

0 1− ρ 0 ρ


= Q.D.Q−1, with Q =



1 1− α 0 1− α

1 0 ρ 1− α

1 −α 0 −(1− ρ)

1 0 −(1− ρ) −(1− ρ)


,

and D = Diag(1 0 0 α+ ρ− 1).

The impact of bond volumes on ex post utilities is then given by:

∂U
∂Bk

= Ck−1



1−ωe

ωe + β2(1−α)(u′(δ)−1)(1−ρ+(1−α)u′(δ))
(1−β)(1−β(α+ρ−1))

− (1−β (α+u′(δ) (1−α)))(1−βρ+β(1−α)u′(δ))
(1−β)(1−β(α+ρ−1))

1−ωe

ωe u′(δ) + β(1−αβ)(u′(δ)−1)(1−ρ+(1−α)u′(δ))
(1−β)(1−β(α+ρ−1))

− (1−β (α+(1−α)u′(δ)))(β(1−ρ)+(1−βα)u′(δ))
(1−β)(1−β(α+ρ−1))


.

From ∂U
∂Bk

we find that ∂Uee
∂Bk

, ∂U
eu

∂Bk
> 0, but ∂Uue

∂Bk
, ∂U

uu

∂Bk
< 0 if and only if β < βex post = [(α+ (1− α)u′ (δ)]−1.
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To derive the impact of changes in bond supplies on ex ante welfare, we premultiply the ex post

utility vector by the vector of population weights W = 1
2−α−ρ [α(1− ρ), (1−α)(1− ρ), (1−α)(1−

ρ), ρ(1− α)]:

W
∂U
∂Bk

= Ck−1 (1− α)
(1− β + βu′(δ))(α+ (1− α)u′(δ))− (1− ρ+ ρ u′(δ))

(1− β)(2− α− ρ)
.

This expression is negative if and only if β < βex ante = α+ρ−1
α+(1−α)u′(δ)(< βex post). QED.

H Proof of Proposition 6

Similarly, computing the instant and intertemporal utilities of the four agent types when the em-

ployed pay (ωu/ωe) ν and the unemployed receive ν, we find that expressions of instantaneous Û

and intertemporal Û utility vectors are:

∂Û
∂ν

=
[
− ωu

ωe 12 u′(δ + ν) 12

]>
,

W ∂Û
∂ν

= (1−α)(u′(δ+ν)−1)
(1−β)(2−α−ρ) > 0,

∂Û
∂ν

=
1

(1− β)(1− β(α+ ρ− 1))



(β (ρ+ (1− ρ)u′(δ + ν))− 1) 1−α
1−ρ

(β (ρ+ (1− ρ)u′(δ + ν))− 1) 1−α
1−ρ

1− β + (u′(δ + ν)− 1)(1− β α)

1− β + (u′(δ + ν)− 1)(1− β α)


.

We have that ∂Ûeu
∂ν , ∂Û

uu

∂ν > 0 but ∂Ûee
∂ν , ∂Ûue

∂ν < 0 if and only if β < βex post
ν = (ρ + u′ (δ + ν) (1 −

ρ))−1. In contrast, ex ante welfare always increases with ν. QED.
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